首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
大气科学   14篇
地质学   4篇
  2017年   3篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
排序方式: 共有18条查询结果,搜索用时 19 毫秒
11.
12.
The Eastern Mediterranean and the Middle East (EMME) is suffering from abnormal cooling of weather conditions and existence of an extreme weather phenomenon known as ice storm Alexa. The present paper investigates the weather conditions over Europe that causes this abnormal weather over the EMME through December of 2013. Daily data sets of several meteorological elements (temperature, precipitation, relative humidity, sea level pressure, and geopotential height at level 500 hPa, etc.) over the northern hemisphere, including Europe and EMME of December of 2013, have been used through the present work. In addition, to that, a time cross section analysis of the daily operational data for meteorological elements (mean surface temperature, temperature and geopotential height at level 500 hPa, relative humidity, precipitation rate, and sea surface pressure) was done over the EMME for December 2013. The methodology of anomaly and correlation coefficient techniques for the data sets has been used. The results uncovered that the EMME has abnormal and very cold weather conditions due to the inference of meridional blocking persisted over Europe and the existence of the extremely negative geopotential height anomaly aloft over Eastern Europe throughout this month.  相似文献   
13.
An extreme heat wave hit Egypt in summer 2015. Abnormal hot weather conditions existed over Egypt for the entire summer season. The present paper investigates the relationship between the intertropical convergence zone (ITCZ) over Africa and a scorching heat wave that existed over Egypt in summer 2015. The National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data of mean surface air temperature for the domain of Egypt for the summer season from 1948 to 2015 were used in this study. In addition, data of the daily maximum and daily minimum temperature used for the summer season of the year 2015 were also used. Time cross-section analysis of the daily operational data of geopotential height at level 500 hPa over Egypt from 1 June to 31 August 2015 was done. Moreover, the African ITCZ, both the western and the eastern ITCZ, data for summer of 2015 were used for the said period. The time series, time cross-section, anomaly, and correlation coefficient techniques were used to analyze the datasets. The results revealed that a new climate change record of heat wave over Egypt existed in summer 2015. Moreover, there is an outstanding significant positive correlation between the abrupt shift of African ITCZ position and heat wave occurrence over Egypt in summer 2015. In particular, the southerly movement of the eastern African ITCZ controls the weather over Egypt and led to the extreme heat wave in summer 2015.  相似文献   
14.
As a step towards the adoption and use of the regional climate model (RegCM3) for the simulation of intense rainfall events over the Arabian Peninsula, this study examines its sensitivity to domain size, boundary location, forcing fields, and resolution. In the climatological results, RegCM3 performs well in reproducing the annual and the seasonal mean precipitation as well as the contrast between wet and dry years in terms of the amounts and locations of the rainbands. In addition, simulations are performed for two cases of intense rainfall events in the Jeddah area and surroundings using a combination of three domains and two boundary forcings at 50?km. The results show that different combinations of these parameters provide different skills for the regional model. However, RegCM3 performs relatively better when ERA40 (NNRP2) is used at the boundaries in the smaller domain (larger domain), indicating the importance of the stronger (relatively weaker) influence of boundary forcing needed to capture these intense rainfall events around Jeddah. This may be explained by the fact that around that region, RegCM3 produces, in the smaller domain, higher relative humidity and stronger wind vectors closer to the reanalyses when nested within the ERA40, while it shows its best performance with the larger domain when driven by NNRP2. It is also shown that the use of high resolution does not systematically improve the simulation of such events, although some encouraging results were produced.  相似文献   
15.
16.

A new closure and a modified detrainment for the simplified Arakawa–Schubert (SAS) cumulus parameterization scheme are proposed. In the modified convective scheme which is named as King Abdulaziz University (KAU) scheme, the closure depends on both the buoyancy force and the environment mean relative humidity. A lateral entrainment rate varying with environment relative humidity is proposed and tends to suppress convection in a dry atmosphere. The detrainment rate also varies with environment relative humidity. The KAU scheme has been tested in a single column model (SCM) and implemented in a coupled global climate model (CGCM). Increased coupling between environment and clouds in the KAU scheme results in improved sensitivity of the depth and strength of convection to environmental humidity compared to the original SAS scheme. The new scheme improves precipitation simulation with better representations of moisture and temperature especially during suppressed convection periods. The KAU scheme implemented in the Seoul National University (SNU) CGCM shows improved precipitation over the tropics. The simulated precipitation pattern over the Arabian Peninsula and Northeast African region is also improved.

  相似文献   
17.
18.
The impact of initialization and perturbation methods on the ensemble prediction of the boreal summer intraseasonal oscillation was investigated using 20-year hindcast predictions of a coupled general circulation model. The three perturbation methods used in the present study are the lagged-averaged forecast (LAF) method, the breeding method, and the empirical singular vector (ESV) method. Hindcast experiments were performed with a prediction interval of 10 days for extended boreal summer (May–October) seasons over a 20 year period. The empirical orthogonal function (EOF) eigenvectors of the initial perturbations depend on the individual perturbation method used. The leading EOF eigenvectors of the LAF perturbations exhibit large variances in the extratropics. Bred vectors with a breeding interval of 3 days represent the local unstable mode moving northward and eastward over the Indian and western Pacific region, and the leading EOF modes of the ESV perturbations represent planetary-scale eastward moving perturbations over the tropics. By combining the three perturbation methods, a multi-perturbation (MP) ensemble prediction system for the intraseasonal time scale was constructed, and the effectiveness of the MP prediction system for the Madden and Julian oscillation (MJO) prediction was examined in the present study. The MJO prediction skills of the individual perturbation methods are all similar; however, the MP‐based prediction has a higher level of correlation skill for predicting the real-time multivariate MJO indices compared to those of the other individual perturbation methods. The predictability of the intraseasonal oscillation is sensitive to the MJO amplitude and to the location of the dominant convective anomaly in the initial state. The improvement in the skill of the MP prediction system is more effective during periods of weak MJO activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号