首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
大气科学   6篇
地质学   4篇
海洋学   3篇
天文学   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2004年   3篇
排序方式: 共有14条查询结果,搜索用时 0 毫秒
11.
Using a static massive spherically symmetric scalar field coupled to gravity in the Schwarzschild-de Sitter (SdS) background, first we consider some asymptotic solutions near horizon and their local equations of state (E.O.S.) on them. We show that near cosmological and event horizons our scalar field behaves as a dust. At the next step near two pure de Sitter or Schwarzschild horizons we obtain a coupling dependent pressure to energy density ratio. In the case of a minimally coupling this ratio is ?1 which springs to the mind thermodynamical behavior of dark energy. If having a negative pressure behavior near these horizons we concluded that the coupling constant must be ξ<¼. Therefore we derive a new constraint on the value of our coupling ξ. These two different behaviors of unique matter in the distinct regions of spacetime at present era can be interpreted as a phase transition from dark matter to dark energy in the cosmic scales and construct a unified scenario.  相似文献   
12.
All numerical weather prediction (NWP) models inherently have substantial biases, especially in the forecast of near-surface weather variables. Statistical methods can be used to remove the systematic error based on historical bias data at observation stations. However, many end users of weather forecasts need bias corrected forecasts at locations that scarcely have any historical bias data. To circumvent this limitation, the bias of surface temperature forecasts on a regular grid covering Iran is removed, by using the information available at observation stations in the vicinity of any given grid point. To this end, the running mean error method is first used to correct the forecasts at observation stations, then four interpolation methods including inverse distance squared weighting with constant lapse rate (IDSW-CLR), Kriging with constant lapse rate (Kriging-CLR), gradient inverse distance squared with linear lapse rate (GIDS-LR), and gradient inverse distance squared with lapse rate determined by classification and regression tree (GIDS-CART), are employed to interpolate the bias corrected forecasts at neighboring observation stations to any given location. The results show that all four interpolation methods used do reduce the model error significantly, but Kriging-CLR has better performance than the other methods. For Kriging-CLR, root mean square error (RMSE) and mean absolute error (MAE) were decreased by 26% and 29%, respectively, as compared to the raw forecasts. It is found also, that after applying any of the proposed methods, unlike the raw forecasts, the bias corrected forecasts do not show spatial or temporal dependency.  相似文献   
13.
The paper contains the results of an experimental study on a planing catamaran. The aim of this study is resistance reduction with application of foils. Experiments are performed in different conditions and the results are compared with each other. The foils are used in different configurations and it is concluded that unsuitable design may result in larger resistance. But, it is also shown that, for a good design, the resistance may be reduced considerably.  相似文献   
14.
Rainfed agriculture plays an important role in the agricultural production of the southern and western provinces of Iran. In rainfed agriculture, the adequacy of annual precipitation is considered as an important factor for dryland field and supplemental irrigation management. Different methods can be used for predicting the annual precipitation based on climatic and non-climatic inputs. Among which artificial neural networks (ANN) is one of these methods. The purpose of this research was to predict the annual precipitation amount (millimeters) in the west, southwest, and south of Islamic Republic of Iran with the total area of 394,259?km2, by applying non-climatic inputs according to the long-time average precipitation in each station (millimeters), 47.5?mm precipitation since the first of autumn (day), t 47.5, and other effective parameters like coordinate and altitude of the stations, by using the artificial neural networks. In order to intelligently estimate the annual amount of precipitation in the study regions (ten provinces), feedforward backpropagation artificial neural network model has been used (method I). To predict the annual precipitation amount more accurately, the region under study was divided into three sub-regions, according to the precipitation mapping, and for each sub-region, the neural networks were developed using t 47.5 and long-time average annual precipitation in each station (method II). It is concluded that neural networks did not significantly increase the prediction accuracy in the study area compared with multiple regression model proposed by other investigators. However, in case of ANN, it is better to use a structure of 2–6–6–10–1 and Levenberg–Marquardt learning algorithm and sigmoid logistic activation function for prediction of annual precipitation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号