首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
地质学   17篇
天文学   8篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2009年   4篇
  2008年   2篇
  2006年   3篇
  2003年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
11.
This work discusses the structural and compositional correlation of an unusual group of rocks that comprise post-folding massifs and dikes in the eastern Baltic Shield, which formed between 1.85 and 1.7 Ga. Occurring from the Barents Sea in the north to the Gulf of Finland in the south, these structures are associated with areas of granulite facies rocks that formed under conditions corresponding to the deep continental crust. Large-scale extension of continental crust, which led to the exhumation of the granulite complex, simultaneous with the formation of metasomatic formations and manifestations of post-folding magmatism, was confined to the periphery of a large circular structure, which is interpreted by us as the Baltic nucleus, or a tectonic portion of the continental crust at the end of early Precambrian. The formation of enriched mantle, a source of the Paleozoic alkaline melts, can also be associated with these processes of extension.  相似文献   
12.
We address the problem of assessing the statistical significance of candidate periodicities found using the so-called 'multiharmonic' periodogram, which is being used for detection of non-sinusoidal signals and is based on the least-squares fitting of truncated Fourier series. The recent author's investigation made for the Lomb–Scargle periodogram is extended to the more general multiharmonic periodogram. As a result, closed and efficient analytic approximations to the false alarm probability, associated with multiharmonic periodogram peaks, are obtained. The resulting analytic approximations are tested under various conditions using Monte Carlo simulations. The simulations showed a nice precision and robustness of these approximations.  相似文献   
13.
The paper reports the results of lithogeochemical studies of the Upper Devonian rocks from the Andoma Hill zone of fold-and-fault dislocations (SE Onega region). The rocks are characterized by the negative Eu anomaly (from 0.4 to 0.65) that maks them different from modern sediments of the White Sea. The latter can be regarded as the average composition of mainly Archean (Karelian–Kola) part of the Baltic Shield. In terms of the contents of some trace elements, they also differ from the Vendian rocks of the Zimnii Bereg area. Since the considered rocks are geochemically similar to the Svecofennian metamorphic rocks and Paleoproterozoic granite rapakivi, they could be formed by the erosion of these complexes. The clastic material was transported via a channel confined to the Baltic Shield and Russian Platform junction known as the Polkanov geoflexure.  相似文献   
14.
The southeastern coast of the White Sea and Kii Island incorporates outcrops of conglomerate-type rocks similar to boulder dikes filling tensile fractures in the early Precambrian basement of the platform. They are related to the southwestern flank of the Onega Graben representing the southeastern segment of the Onega–Kandalaksha paleorift. Genesis of these conglomerate-type rocks, previously considered sedimentary ones, is problematic. Special study of the cement of these rocks revealed that it has probably an endogenic nature. It is dominated by carbonate material replacing ultramafic volcanic glass. Carbonatization and analcime mineralization took place at the regressive stage of cement formation within a temperature range of 450–550°C with active release of H2O- and CO2-saturated fluids. Data on the isotopic composition (13C and 18O) for carbonate material of cement from the brecciated rocks testify that the carbonatization was related to input of deep-seated carbon dioxide under subsurface environment. The studies carried out allow us to suppose that these rocks were formed as a result of consolidation of solid–gaseous suspensions inside fractures in the crystalline basement. Penetration of fluidized material along them produced dike-shaped bodies. Such rocks are recently called fluidizates. The sources of solid–gaseous suspension fluxes were basic magmas with a high content of volatiles. Discharge of gases from the magmas was caused by their decompression due to the appearance of tensile zones in lithosphere during rifting.  相似文献   
15.
A. S. Baluev 《Geotectonics》2006,40(3):183-196
The nearly parallel northwest-trending Onega-Kandalaksha, Kerets-Leshukonsky, and Barents paleorift zones located in the northeastern part of the East European Platform are interpreted as a common structural assemblage that was formed in the Middle-Late Riphean as a result of horizontal extension of the continental margin. Therefore, it is reasonable to combine these paleorift structural features into the common White Sea Rift System instead of subdividing them into two or more systems as done previously. The White Sea Rift System originated owing to the breakup of the ancient Paleopangea supercontinent 1300–1240 Ma ago. The latter event occurred as a result of the divergence of the Baltia and Laurentia continental plates that most probably was caused by mantle spreading within the hot equatorial belt of the Earth. The diffuse rifting of that time occurred in the form of near-parallel rifts developing progressively from the inner part of the continental plate toward its margin. A pericratonic sedimentary basin eventually formed at the passive margin of Baltia as a system of roughly parallel rift zones. The geologic and geophysical data show that the passive margin of the East European Platform formed in the Riphean, a phenomenon that corresponds with a model of large-scale extension of the lithosphere after the stage of early ocean-floor spreading. In the course of this process, the brittle upper crust was detached from the ductile lower crust. The geodynamic regime of the Riphean passive margin of the East European Platform probably was similar to the regime of the present-day Atlantic-type passive margins. The White Sea Rift System differs from the transverse Mid-Russian Paleorift System both in origin and age. The Mid-Russian Paleorift System is considered to have formed in the Late Riphean as a result of transtension along a mobile zone in the ancient basement. The lithosphere of northeastern Fennoscandia has experienced horizontal extension since the Middle Riphean, a phenomenon that is closely related to the evolution of the White Sea Rift System, i.e., to the formation of the passive margin of the Baltia continent.  相似文献   
16.
17.
The components of deformation related to endogenic (tectonic) and exogenic (glaciotectonic, gravitational sliding) factors are considered in the sedimentary platform cover by a study of Andoma dislocations in the Upper Devonian sedimentary rocks of the Lake Onega district. These structures are localized in the eponymous segment of the southeastern margin of the Fennoscandian (Baltic) Shield; indications of high tectonic activity are noted along this margin. As has been shown by a structural study, the development of the Andoma structure is caused by long-term (Late Devonian–Quaternary) multistage deformations related to tectonic factors and, to a lesser degree, glaciotectonics. The consecutive stages of synsedimentation normal faulting and landsliding, bedding-plane gliding, various forms of shear flow in a regime of transpression, glaciotectonic thrusting, and neotectonic transpression are recognized in the deformation history.  相似文献   
18.
The region of the junction and interaction between the East European Craton (EEC) and the West Arctic Craton (WAC) is regarded as a complexly built zone or assembly of both the volumetric and dividing linear tectonic elements: the Trollfjord–Rybachi–Kanin (TRK) Lineament, the pericratonic subsidence zone of the EEC, the Karpinskii Lineament, the Murmansk Block of the Fennoscandian (Baltic) Shield, and the Kolmozero–Voronya Zone, which are briefly characterized in this paper. Evidences of thrusting have been established not only in the TRK Suture Zone and on the Rybachi Peninsula, which represent a fragment of the Timanides fold–thrust belt, but also to the southwest, in the Upper Riphean and Vendian terrigenous sequences making up the Sredni Peninsula and related to the pericratonic trough of the VEC. Two phases of fold–thrust deformations with elements of left-lateral strike-slip offset pertaining to the activity and evolution of the lineament suture dividing the Sredni and Rybachi peninsulas have been recorded. The variously oriented fault–fold systems within this fault zone are evidence for multistage deformation and can be explained by an at least twostage change in the kinematics that control displacement along the fault. The disintegrated granitic massifs of the Archean crystalline basement tectonically squeezed out in the upper crust as protrusions are localized within TRK Fault Zone. Plagiogranitic bodies, which underwent superposed fault-fold deformations of both kinematic stages, are an evidence of the vigorous tectonic event that predated folding and two-stage strike-slip displacement along the TRK Fault—by thrusting of Riphean sequences from north to south toward the Archean craton. The nappe–thrust regional structure was formed at this stage; elements of it have been recognized in the Sredni, Rybachi, and Kanin peninsulas. The main stages of tectonic evolution in the junction zone between the EEC and the WAP have been revealed and substantiated.  相似文献   
19.
Geotectonics - The general tectonic features of the Baltic-Mezen zone developed along the border of the Fennoscandian shield and the Russian Plate in the north of the East European platform, are...  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号