首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   5篇
测绘学   3篇
地球物理   16篇
地质学   15篇
海洋学   3篇
天文学   4篇
自然地理   8篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   5篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   5篇
  2009年   8篇
  2008年   3篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1999年   2篇
  1998年   1篇
  1989年   1篇
排序方式: 共有49条查询结果,搜索用时 46 毫秒
11.
Authigenic carbonates from outcrops of the northern Apennines consist of small and irregular lenses and exhibit numerous features indicative of cold-seep settings. Detailed petrographic, mineralogical and geochemical studies from two Miocene deposits are presented. The first carbonate outcrop, named Fosso Riconi, is located in the foredeep basin of the Apenninic chain, whereas the second deposit represents a satellite basin called Sarsetta. The stable isotope data from specific carbonate minerals show a wide range of values well known from other palaeoseeps of the Apennine Mountains. The majority of seep carbonates are formed by low-Mg calcite and ankerite. Those minerals have δ13C values between ?7 and ?23‰ V-PDB, suggesting variable amounts of carbonate derived from oxidized methane, seawater (dissolved inorganic carbon) and sedimentary organic matter. Dolomite samples have the lowest δ13C values (?30.8 to ?39.0‰ V-PDB), indicating methane as the main carbon source. The findings suggest an evolutionary formation of the seeps and development of authigenic carbonates influenced by the activity of chemosynthetic organisms, of which large lucinid clams are preserved. Bioirrigation by the clams controlled the sediment–water exchange, and is here considered as an explanation for the anomalous Mg content of the calcite. We hypothesize that the seep carbonates were formed during periods of active methane-rich seepage, whereas during periods of slow seepage carbonate formation was reduced. Despite different geological settings, the two examined deposits of Sarsetta and Fosso Riconi show similar features, suggesting that a common pattern of fluid circulation played a major role in carbonate formation at both seep sites.  相似文献   
12.
This diagenetic study (including fieldwork, petrographic, fluid inclusion, and stable isotope investigations) deals with the outcrop of Upper Permian–Lower Triassic carbonate rocks, which are equivalent to the Khuff Formation. The studied succession, which outcrops in the Ras Al Khaimah region, northern United Arab Emirates, comprises three formations, including the Bih, the Hagil, and the Ghail formations. The study focuses on unraveling the conditions and fluid compositions encountered during diagenesis of the succession. Emphasize is also made on linking diagenesis to major stratigraphic surfaces and to highlight reservoir property evolution and heterogeneity of the studied rocks. The evolution of fluids and related diagenetic products can be summarized as follows: (1) formation of near-surface to shallow burial, fine-crystalline dolomite (dolomite matrix) through pervasive dolomitization of carbonate sediments by modified marine pore waters; (2) formation of coarse-crystalline dolomite cement by highly evolved marine pore waters (13–23 wt.% NaCl eq.) at elevated temperatures (120–208°C), and (3) calcite cementation by highly saline fluid (20–23 wt.% NaCl eq.) at high temperature (170–212°C). A final calcite cement generation has been formed by the percolation of meteoric fluids during uplift. Fracture- and vug-filling diagenetic minerals are mainly restricted to the mid-Bih breccia marker level, suggesting preferential focused fluid flow through specific stratigraphic surfaces as well as along tectonic-related structures. Reservoir properties have been evolved as result of the interplay of the original sedimentary texture and the diagenetic evolution. Porosity is higher in the Bih Formation, which is dominated by dolomitized packstones and grainstones, than in the Hagil and Ghail formations, consisting mainly of dolomitized mudstones and wackestones. Image analyses were used to quantify the visual porosity in thin sections. The highest porosity values were measured in the Bih Formation, which is characterized by significant amounts of vug- and fracture-filling cements. This feature is attributed to the increase of porosity owing to substantial dissolution of abundant intergranular and vug-filling cements. In contrast, the Hagil and Ghail formations, which consist of finer-grained rock than the Bih Formation, were less cemented, and thus, the porosity enhancement by cement dissolution was insignificant.  相似文献   
13.
 A model for the analysis of topographic influence on shallow landslide initiation is applied to an experimental mountain basin where high-resolution digital elevation data are available: the Cordon catchment (5 km2) located in northern Italy. The model delineates those areas most prone to shallow landsliding due to surface topographic effects on hydrologic response. The model is composed of two parts: a steady-state model for shallow sub-surface runoff and an infinite-slope Coulomb failure model which assumes that the soil is cohesionless at failure. An inventory of landslide scars is used to document sites of instability and to provide a test of model performance by comparing observed landslide locations with model predictions. The model reproduces the observed distribution of landslide locations in a consistent way, although spatial variations in soil strength and transmissivity, which are not accounted for in the model, influence specific distribution of landslide areas within regions of similar topographic control. Received: 15 October 1996 · Accepted: 25 June 1997  相似文献   
14.
Chemosynthetic carbonates, identified by isotopic, palaeoecological and sedimentological features, are concentrated in middle-late Miocene satellite and foredeep deposits of the northern Apennines. Chemoherms in the foredeep are hosted in thick pelitic intervals, probably deposited in intrabasinal structural highs, which are entirely or partly involved in large slumps, in many cases associated with extrabasinal slides. Sediment textures in carbonates and in the enclosing foredeep pelitic sediments indicate a link between hydrocarbon-fluid venting, sediment deformation and mobilisation, and tectonics. The intensity and style of fluid release phases directly influenced chemoherm typology, and also determined overpressure conditions in low shear strength pelitic sediments, favouring sediment mobilisation and influencing slope instability, which widely affected the Apennine foredeep. Chemosynthetic carbonates are associated with sites of tectonically fractured and compressed sediments in the Apennine foredeep-thrust belt system, thus indicating a relation with the tectonic loading of the Apennine thrust-sheets, which favoured fluid expulsion along forerunner faults. Possible gas hydrate contributions to fluid expulsion processes are discussed, based on sediment textures compared with modern vent areas. Finally, sediment instability may have facilitated a large amount of fluid escape, thus stopping carbonate precipitation.  相似文献   
15.
Watershed management and headwater reconstruction programs require a reliable knowledge of sediment dynamics. Geographical Information Systems (GIS) provide the framework for the implementation of different complex techniques for the assessment of shallow landsliding and erosion processes in mountain basins. This paper presents some morphometric indicators aimed at erosion and sediment delivery analysis. The proposed indicators can be easily derived from medium to fine resolution Digital Elevation Models (DEM). Applications conducted in Eastern Italian Alps have shown the adequateness of the proposed approach to address erosion and sediment-related problems. The analysis considered the classification of sediment source areas with regard to their activity, the comparison between drainage basins having different morphological characteristics and the topographic control on sediment transport capacity, with a particular attention to the identification of channel reaches characterised by a low sediment transport capacity.  相似文献   
16.
An integrated approach consisting of fracture analysis, petrography, carbon, oxygen and strontium‐isotope analyses, as well as fluid‐inclusion micro‐thermometry, led to a better understanding of the evolution of fluid–rock interactions and diagenesis of the Upper Permian to Upper Triassic carbonates of the United Arab Emirates. The deposited carbonates were first marked by extensive early dolomitization. During progressive burial, the carbonates were affected by dolomite recrystallization as well as precipitation of vug and fracture‐filling dolomite, quartz and calcite cements. After considerable burial during the Middle Cretaceous, sub‐vertical north–south oriented fractures (F1) were cemented by dolomite derived from mesosaline to hypersaline fluids. Upon the Late Cretaceous maximum burial and ophiolite obduction, sub‐vertical east–west fractures (F2) were cemented by dolomite (Dc2) and saddle dolomite (Ds) derived from hot, highly saline fluids. Then, minor quartz cement has precipitated in fractures from hydrothermal brines. Fluid‐inclusion analyses of the various diagenetic phases imply the involvement of increasingly hot (200°C) saline brines (20 to 23% NaCl eq.). Through one‐dimensional burial history numerical modelling, the maximum temperatures reached by the studied rocks are estimated to be in the range of 160 to 200°C. Tectonically‐driven flux of hot fluids and associated diagenetic products are interpreted to have initiated during the Late Cretaceous maximum burial and lasted until the Oligocene–Miocene compressional tectonics and related uplift. The circulation of such hydrothermal brines led to partial dissolution of dolomites (Dc2 and Ds) and to precipitation of hydrothermal calcite C1 in new (mainly oriented north–south; F3) and pre‐existing, reactivated fractures. The integration of the obtained data confirms that the diagenetic evolution was controlled primarily by the interplay of the burial thermal evolution of the basin and the regional tectonic history. Hence, this contribution highlights the impacts of regional tectonics and basin history on diagenetic processes, which may subsequently affect reservoir properties.  相似文献   
17.
The search for the optimal spatial scale for observing landforms to understand physical processes is a fundamental issue in geomorphology. Topographic attributes derived from Digital Terrain Models (DTMs) such as slope, curvature and drainage area provide a basis for topographic analyses. The slope–area relationship has been used to distinguish diffusive (hillslope) from linear (valley) processes, and to infer dominant sediment transport processes. In addition, curvature is also useful in distinguishing the dominant landform process. Recent topographic survey techniques such as LiDAR have permitted detailed topographic analysis by providing high-quality DTMs. This study uses LiDAR-derived DTMs with a spatial scale between 1 and 30 m in order to find the optimal scale for observation of dominant landform processes in a headwater basin in the eastern Italian Alps where shallow landsliding and debris flows are dominant. The analysis considered the scaling regimes of local slope versus drainage area, the spatial distribution of curvature, and field observations of channel head locations. The results indicate that: i) hillslope-to-valley transitions in slope–area diagrams become clearer as the DTM grid size decreases due to the better representation of hillslope morphology, and the topographic signature of valley incision by debris flows and landslides is also best displayed with finer DTMs; ii) regarding the channel head distribution in the slope–area diagrams, the scaling regimes of local slope versus drainage area obtained with grid sizes of 1, 3, and 5 m are more consistent with field data; and iii) the use of thresholds of standard deviation of curvature, particularly at the finest grid size, were proven as a useful and objective methodology for recognizing hollows and related channel heads.  相似文献   
18.
This study aimed to investigate the seasonal variability of runoff generation processes, the sources of stream water, and the controls on the contribution of event water to streamflow for a small forested catchment in the Italian pre‐Alps. Hydrometric, isotopic, and electrical conductivity data collected between August 2012 and August 2013 revealed a marked seasonal variability in runoff responses. Noticeable differences in runoff coefficients and hydrological dynamics between summer and fall/spring rainfall events were related to antecedent moisture conditions and event size. Two‐component and three‐component hydrograph separation and end‐member mixing analysis showed an increase in event water contributions to streamflow with event size and average rainfall intensity. Event water fractions were larger during dry conditions in the summer, suggesting that stormflow generation in the summer consisted predominantly of direct channel precipitation and some saturated overland flow from the riparian zone. On the contrary, groundwater and hillslope soil water contributions dominated the streamflow response during wet conditions in fall. Seasonal differences were also noted between event water fractions computed based on isotopic and electrical conductivity data, likely because of the dilution effect during the wetter months. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
19.
In August 2009, the typhoon Morakot, characterized by a cumulative rainfall up to 2884 mm in about three days, triggered thousands of landslides in Taiwan. The availability of LiDAR surveys before (2005) and after (2010) this event offers a unique opportunity to investigate the topographic signatures of a major typhoon. The analysis considers the comparison of slope–area relationships derived by LiDAR digital terrain models (DTMs). This approach has been successfully used to distinguish hillslope from channelized processes, as a basis to develop landscape evolution models and theories, and understand the linkages between landscape morphology and tectonics, climate, and geology. We considered six catchments affected by a different degree of erosion: three affected by shallow and deep‐seated landslides, and three not affected by erosion. For each of these catchments, 2 m DTMs were derived from LiDAR data. The scaling regimes of local slope versus drainage area suggested that for the catchments affected by landslides: (i) the hillslope‐to‐valley transitions morphology, for a given value of drainage area, is shifted towards higher value of slopes, thus indicating a likely migration of the channelized processes and erosion toward the catchment boundary (the catchment head becomes steeper because of erosion); (ii) the topographic gradient along valley profiles tends to decrease progressively (the valley profile becomes gentler because of sediment deposition after the typhoon). The catchments without any landslides present a statistically indistinguishable slope–area scaling regime. These results are interesting since for the first time, using multi‐temporal high‐resolution topography derived by LiDAR, we demonstrated that a single climate event is able to cause significant major geomorphic changes on the landscape, detectable using slope–area scaling analysis. This provides new insights about landscape evolution under major climate forcing. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
20.
Drainage channels are an integral part of agricultural landscapes, and their impact on catchment hydrology is strongly recognized. In cultivated and urbanized floodplains, channels have always played a key role in flood protection, land reclamation, and irrigation. Bank erosion is a critical issue in channels. Neglecting this process, especially during flood events, can result in underestimation of the risk in flood‐prone areas. The main aim of this work is to consider a low‐cost methodology for the analysis of bank erosion in agricultural drainage networks, and in particular for the estimation of the volumes of eroded and deposited material. A case study located in the Veneto floodplain was selected. The research is based on high‐resolution topographic data obtained by an emerging low‐cost photogrammetric method (structure‐from‐motion or SfM), and results are compared to terrestrial laser scanning (TLS) data. For the SfM analysis, extensive photosets were obtained using two standalone reflex digital cameras and an iPhone5® built‐in camera. Three digital elevation models (DEMs) were extracted at the resolution of 0.1 m using SfM and were compared with the ones derived by TLS. Using the different DEMs, the eroded areas were then identified using a feature extraction technique based on the topographic parameter Roughness Index (RI). DEMs derived from SfM were effective for both detecting erosion areas and estimating quantitatively the deposition and erosion volumes. Our results underlined how smartphones with high‐resolution built‐in cameras can be competitive instruments for obtaining suitable data for topography analysis and Earth surface monitoring. This methodology could be potentially very useful for farmers and/or technicians for post‐event field surveys to support flood risk management. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号