首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   3篇
  国内免费   5篇
大气科学   4篇
地球物理   10篇
地质学   50篇
海洋学   6篇
天文学   3篇
自然地理   20篇
  2017年   2篇
  2016年   1篇
  2014年   1篇
  2013年   6篇
  2012年   5篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  2000年   10篇
  1998年   1篇
  1996年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   7篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1982年   1篇
  1979年   4篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1972年   3篇
  1971年   2篇
  1969年   1篇
  1968年   3篇
  1967年   1篇
  1966年   3篇
  1965年   1篇
  1963年   1篇
  1962年   2篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
11.
12.
Application of the principles of transport theory to studiesof magma-hydrothermal systems permits quantitative predictionsto be made of the consequences of magma intruding into permeablerocks. Transport processes which redistribute energy, mass,and momentum in these environments can be represented by a setof partial differential equations involving the rate of changeof extensive properties in the system. Numerical approximationand computer evaluation of the transport equations effectivelysimulates the crystallization of magma, cooling of the igneousrocks, advection of chemical components, and chemical and isotopicmass transfer between minerals and aqueous solution. Numerical modeling of the deep portions of the Skaergaard magma-hydrothermalsystem has produced detailed maps of the temperature, pressure,fluid velocity, integrated fluid flux, 18O-values in rock andfluid, and extent of nonequilibrium exchange reactions betweenfluid and rock as a function of time for a two-dimensional cross-sectionthrough the pluton. An excellent match was made between calculated18O-values and the measured 18O-values in the three principalrock units, basalt, gabbro, and gneiss, as well as in xenolithsof roof rocks that are now embedded in Layered Series; the latterwere evidently depleted in 18O early in the system's coolinghistory, prior to falling to the bottom of the magma chamber.The best match was realized for a system in which the bulk rockpermeabilities were 10–13 cm2 for the intrusion, 10–11cm2 for basalt, and 10–16 cm2 for gneiss; reaction domainsizes were 0.2 cm in the intrusion and gneiss and 0.01 cm inthe basalts, and activation energy for the isotope exchangereaction between fluid and plagioclase was 30 kcal/mole. The calculated thermal history of the Skaergaard system wascharacterized by extensive fluid circulation that was largelyrestricted to the permeable basalts and to regions of the plutonstratigraphically above the basalt-gneiss unconformity. Althoughfluids circulated all around the crystallizing magma, fluidflow paths were deflected around the magma sheet during theinitial 130,000 years. At that time, crystallization of thefinal sheet of magma and fracture of the rock shifted the circulationsystem toward the center of the intrusion, thereby minimizingthe extent of isotope exchange between rocks near the marginof the intrusion at this level. For comparison, similar calculationswere also made for pure conductive cooling; it was found thatthe rate of crystallization of the magma body was not changed.The solidified pluton cooled by a factor of about 2 faster inthe presence of a hydrothermal system. Transport rates of thermal energy out of the intrusion and oflow-18O fluids into the intrusion controlled the overall isotopeexchange process. During the initial 150,000 years, temperatureswere high and reaction rates were fast; thus, fluids flowinginto the intrusion quickly equilibrated with plagioclase. However,the temperature decreased between 120,000 and 175,000 yearsand caused a decrease in reaction rates and an increase in theequilibrium fractionation factor between plagioclase and fluid.Consequently, during this time period fluids in the intrusiontended to be out of equilibrium with plagioclase. After 175,000years temperatures had decreased sufficiently that reactionrates became insignificant, but convection rates were largeenough to redistribute fluid and enlarge the regions where fluidand plagioclase were out of equilibrium. By 400,000 years, thepluton had cooled to approximately ambient temperatures, andthe final 18O values were ‘frozen in’. Reactionsbetween hydrothermal fluid and the intrusion occurred over abroad range in temperature, 1000-200 °C, but 75 per centof the fluid circulated through the intrusion while its averagetemperature was >480 °C. This relatively high temperatureis consistent with the observation that only minor amounts ofhydrothermal alteration products were formed in the naturalsystem, even where several per mil shifts in 18O were detected. The relative quantities of fluid to rock integrated over theentire cooling history were 0.52 for the upper part of intrusion,0.88 for the basalt, 0.003 for the gneiss, and 0.41 for theentire domain. Almost all of the fluid flowed into the intrusionfrom the basalt host rocks that occur adjacent to the side contactsof the intrusion. Convection transferred about 20 per cent ofthe total heat contained in the gabbro upward into the overlyingbasalts; the remaining 80 per cent of the heat was transferredby conduction.  相似文献   
13.
Evidence for a Picritic, Volatile-rich Magma beneath Mt. Shasta, California   总被引:2,自引:1,他引:2  
Large, magnesium-rich olivines are plentiful in several Holocenecinder cones within 20 km of Mt. Shasta Summit. Glasses (formerlysilicate melts) included in the olivines are high alumina basalts(tholeiites and olivine tholeiites). In the most magnesian olivinesthe glass inclusions have large vapor bubbles. Surrounding someof the glass inclusions are broad Fe-rich zones and ghost outlines.These facts indicate crystallization of major proportions ofolivine from the initial trapped melts. The initial melts containedan inferred 24 per cent of MgO and were rich in volatiles. Theinferred entrapment temperature of the initial melt is 1410°C. The initial liquid is a possible mantle derived parentof Mt. Shasta basalts and andesites and of some hidden alpineperidotite.  相似文献   
14.
The Kinsman Intrusive Suite occurs in six major plutons of westernNew Hampshire, covering a total area of 2240 km2. It is an Acadian-agesyntectonic gneissic S-type peraluminous granitoid, rangingin composition from quartz diorite to granite. Much of the Kinsmanis characterized by very large (up to 120 mm in maximum dimension)megacrysts of alkali feldspar, but the bulk chemistry of therocks indicates that these cannot be phenocrysts crystallizedfrom initially homogeneous melts. Locally, there is abundant(20 per cent) almandine-rich garnet, and graphite is a commonaccessory.In contrast to the unannealed orthoclase in surroundingmetapelites, the alkali feldspar of the Kinsman has, for themost part, inverted to maximum microcline. The garnets havecore temperatures in the range of 800 to 900 ?C, and are pseudomorphedby, or show reaction rims to, biotite. Plagioclase commonlyshows zoning, some of it oscillatory. These features are magmaticin nature, and argue against the conclusions of previous investigatorsthat the mineralogy and textures of the rock are due to regionalmetamorphism of a previously-crystallized two-mica granitoidwhich has undergone prograde reactions such as:muse + bio +3 qtz 2 Kfs + gar + 2H2O.The intrusives have also producedrecognizable contact-metamorphic features in the wallrocks andare probably coeval with the dominant M2 Acadian metamorphism.Majorelement analytical data for the Kinsman suite has been examinedby least squares mixing-model and extended Q-mode factor analysis.These calculations, supported by consideration of REE data,suggest that the most likely origin for the Kinsman magmas isby deep-crustal anatexis of slightly calcareous metapelites,and involves a reaction such as:bio + Al2SiO5 + qtz + feldspars gar + cord + Kfs + plag + melt.In non-calcareous pelites thisreaction produces a water-undersaturated peraluminous melt attemperatures above 700 ?C, and allows for the early crystallizationor recrystallization of K-feldspar, plagioclase, and garnetin a crystal-liquid mush or migma. Geochemically, garnet + plagioclaseare treated as restite, and a minimum-melt granite as the magmain the Q-mode and mixing-model calculations. The variabilityin chemistry of the Kinsman Intrusive Suite is best explainedon the basis of mixing of leucogranitic anatectic melts withgarnet-plagioclase restitic material and a quartz-feldspar-sillimanite-biotiterock, but only very slightly affected by crystal settling.  相似文献   
15.
ABSTRACT. Crusts of white carbonate precipitate occur commonly on the upper surfaces of glacially sculptured Precambrian granites and gneisses in east-central Ellesmere Island. Radiocarbon dating of 21 such carbonate precipitates, from elevations between 50 m and 1050 m a.s.l., has yielded only Holocene ages. Two samples from Ellesmere Island, plus one from Inglefield Land, Greenland, have calibrated ages over 5000 years, the rest are younger. The formation of these deposits, mainly calcite and characterized by unusually heavy δ13C ratios (+3.36 to +15.18‰), has apparently been aided in some cases by the presence of bacteria, and some crusts seem to have developed where Ca-bearing minerals are more prevalent. In the case of Bache Peninsula and Cape Herschel, where the carbonate crusts are particularly abundant, the presence of calcareous till may have played a role as well. The carbonate crusts may be related to the presence of small, thin carapace ice caps, when such features formed at lower elevations than those at which they exist today. The more extensive cover of ice and snow is postulated to have existed during the latter, cooler part of the Holocene, especially during the period from 2500 to 100 years ago, deduced as a period of low melt from ice core studies on the Agassiz Ice Cap, 200 km to the north. The existence of carapace ice caps at lower elevations also agrees with the radiocarbon evidence for outlet glacier advances during the last 2000 years on both east and west margins of the Prince of Wales Icefield. Alternatively, the white carbonate crusts may be, to a large degree, the result of weathering processes. In either case they provide minimum ages for the exposed, ice-sculptured rock surfaces on which they occur.  相似文献   
16.
To understand the petrogenesis of peraluminous granites syntectonicto the Dorsal de Canguçu Transcurrent Shear Zone in theSul-rio-grandense Shield, Brazil, melting experiments were performedon one of the potential protoliths, a cordierite-bearing semi-peliticmetasedimentary gneiss (PE-1). Experiments were conducted atpressures of 5, 10 and 15 kbar, at temperatures of 700–900°C,and under fluid-absent and 5% H2O-present conditions. The experimentsshow that fluid-absent melting begins at near-solidus conditions,around 700°C, promoted by participation of retrogressivephengitic muscovite in the reaction Mus + Kf ± Qz = melt± Fe–Ti oxide ± Als, producing a very smallamount of melt (<9%) with widely ranging composition. Allhypersolidus experiments (>800°C) produced S-type graniticmelts promoted by participation of biotite or cordierite inthe reactions Bio + Pl + Crd + Qz = Px + Fe–Ti oxide +melt at 5 kbar, and Bio + Pl + Crd ± Qz = Grt + Als ±Kf + melt at 10 and 15 kbar, both producing a high amount ofmelt (10–63% by volume). The melt compositions obtainedat 900°C and 15 kbar under fluid-absent conditions, promotedby biotite or cordierite breakdown, are similar to the syntectonicgranites. However, it is unlikely that the granites were formedat this pressure (corresponding to a depth of melting of  相似文献   
17.
Lake Hoare, Antarctica: sedimentation through a thick perennial ice cover   总被引:7,自引:0,他引:7  
Lake Hoare in the Dry Valleys of Antarctica is covered with a perennial ice cover more than 3 m thick, yet there is a complex record of sedimentation and of growth of microbial mats on the lake bottom. Rough topography on the ice covering the lake surface traps sand that is transported by the wind. In late summer, vertical conduits form by melting and fracturing, making the ice permeable to both liquid water and gases. Cross-sections of the ice cover show that sand is able to penetrate into and apparently through it by descending through these conduits. This is the primary sedimentation mechanism in the lake. Sediment traps retrieved from the lake bottom indicate that rates of deposition can vary by large amounts over lateral scales as small as 1 m. This conclusion is supported by cores taken in a 3 × 3 grid with a spacing of 1.5 m. Despite the close spacing of the cores, the poor stratigraphic correlation that is observed indicates substantial lateral variability in sedimentation rate. Apparently, sand descends into the lake from discrete, highly localized sources in the ice that may in some cases deposit a large amount of sand into the lake in a very short time. In some locations on the lake bottom, distinctive sand mounds have been formed by this process. They are primary sedimentary structures and appear unique to the perennially ice-covered lacustrine environment. In some locations they are tens of centimetres high and gently rounded with stable slopes; in others they reach ~ 1 m in height and have a conical shape with slopes at angle of repose. A simple formation model suggests that these differences can be explained by local variations in water depth and sedimentation rate. Rapid colonization and stabilization of fresh sand surfaces by microbial mats composed of cyanobacteria, eukaryotic algae, and heterotrophic bacteria produces a complex intercalation of organic and sandy layers that are a distinctive form of modern stromatolites.  相似文献   
18.
In this study, the stable isotope and trace element geochemistries of meteoric cements in Pleistocene limestones from Enewetak Atoll (western Pacific Ocean), Cat Island (Bahamas), and Yucatan were characterized to help interpret similar cements in ancient rocks. Meteoric calcite cements have a narrow range of δ18O values and a broad range of δ13C values in each geographical province. These Pleistocene cements were precipitated from water with stable oxygen isotopic compositions similar to modern rainwater in each location. Enewetak calcite cements have a mean δ18O composition of ?6.5%0 (PDB) and δ13C values ranging from ?9.6 to +0.4%0 (PDB). Sparry calcite cements from Cat Island have a mean δ18O composition of ?4.1%0 and δ13C values ranging from ?6.3 to + 1.1%0. Sparry cements from Yucatan have a mean δ18O composition of ?5.7%0 and δ13C values of ?8.0 to ?2.7%0. The mean δ18O values of these Pleistocene meteoric calcite cements vary by 2.4%0 due to climatic variations not related directly to latitude. The δ13C compositions of meteoric cements are distinctly lower than those of the depositional sediments. Variations in δ13C are not simply a function of distance below an exposure surface. Meteoric phreatic cements often have δ13C compositions of less than —4.0%0, which suggests that soil-derived CO2 and organic material were washed into the water table penecontemporaneous with precipitation of phreatic cements. Concentrations of strontium and magnesium are quite variable within and between the three geographical provinces. Mean strontium concentrations for sparry calcite cements are, for Enewetak Atoll, 620 ppm (σ= 510 ppm); for Cat Island, 1200 ppm (σ= 980 ppm); and for Yucatan, 700 ppm (σ= 390 ppm). Equant cements, intraskeletal cements, and Bahamian cements have higher mean strontium concentrations than other cements. Equant and intraskeletal cements probably precipitated in more closed or stagnant aqueous environments. Bahamian depositional sediments had higher strontium concentrations which probably caused high strontium concentrations in their cements. Magnesium concentrations in Pleistocene meteoric cements are similar in samples from Enewetak Atoll (mean =1.00 mol% MgCO3; σ= 0.60 mol% MgCO3) and Cat Island (mean = 0.84 mol% MgCO3; σ= 0.52mol% MgCO3) but Yucatan samples have higher magnesium concentrations (mean = 2.20 mol% MgCO3: σ= 0.84mol% MgCO3). Higher magnesium concentrations in some Yucatan cements probably reflect precipitation in environments where sea water mixed with fresh water.  相似文献   
19.
Abstract Volcanism in the back-arc side region of Central Luzon, Philippines, with respect to the Manila Trench is characterized by fewer and smaller volume volcanic centers compared to the adjacent forearc side-main volcanic arc igneous rocks. The back-arc side volcanic rocks which include basalts, basaltic andesites, andesites and dacites also contain more hydrous minerals (ie, hornblende and biotite). Adakite-like geochemical characteristics of these back-arc lavas, including elevated Sr, depleted heavy rare earth elements and high Sr/Y ratios, are unlikely to have formed by slab melting, be related to incipient subduction, slab window magmatism or plagioclase accumulation. Field and geochemical evidence show that these adakitic lavas were most probably formed by the partial melting of a garnet-bearing amphibolitic lower crust. Adakitic lavas are not necessarily arc–trench gap region slab melts.  相似文献   
20.
Abstract The basement complex of Bohol Island consists of the Southeast Bohol Ophiolite Complex (SEBOC), Cansiwang Melange and Alicia Schist. The SEBOC is a complete, but dismembered ophiolite with outcrops generally trending northeast– southwest and dipping north-west. The harzburgite units of the SEBOC are almost always observed to be thrusted onto the Cansiwang Melange, which in turn is thrusted onto the Alicia Schist. Bouguer gravity values on Bohol range from about +60 mGal in the west to +120 mGal in the east, in the region to the north-east of the SEBOC outcrops. Based on the present distribution of the SEBOC units and their thrust fault relationship with the Cansiwang Melange and Alicia Schist, it is proposed that the SEBOC was emplaced by onramping towards the south-eastward direction. However, the orientation of the Bouguer highs suggests that the thrusting direction of the ophiolite units is towards the south-west and not towards the south-east.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号