首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
  国内免费   1篇
大气科学   1篇
地球物理   1篇
海洋学   13篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2007年   2篇
  2005年   2篇
  2000年   1篇
  1998年   2篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
11.
The dismal record of fisheries management worldwide is often blamed on managers' and scientists' bigoted pursuit of the flawed Maximum Sustainable Yield (MSY) objective. This paper aims at clarifying that MSY has never been a key element in the EU Common Fisheries Policy (CFP), and has not been for several decades the basis of scientific advice provided in support of that policy. The recent emergence of MSY in debates about the CFP might be a rhetoric response to international pressure rather than a willing change in policy. The major danger of assigning the notorious failure of the CFP to a wrong culprit, MSY, is to distract research efforts away from investigating the real causes that likely lay in the institutional set-up. Many objections against the reference points associated with MSY, as targets or limits, are well-founded but controversies among experts, when left unbridled, just provide the opportune climate for politicians to delay actions in the direction of reduced fishing impacts on fish stocks and marine ecosystems.  相似文献   
12.
Ten European fish stocks recognised by the European Union as “outside safe biological limits” are considered in light of widespread reforms to fisheries legislation in 2013, particularly the legal responsibility to exploit these resources sustainably. Given that some of these stocks are – as of 2013 – fished at over 150% the recommended intensity and many have been outside of these limits for the entirety of their assessment history, the utilisation of traditional fisheries management measures of sustainability are questioned and tougher approaches such as “zero-catch” and long-term, expansive spatial closure scenarios are considered. Finally, the pervasive issue of data-deficiency (the status of 54% of European stocks) is briefly considered, with specific reference to the understudied West of Scotland and North Sea stock of European seabass (Dicentrarchus labrax).  相似文献   
13.
We investigate the interactions between anthropogenic climate change, socioeconomic developments and tuna fishery management strategies. For this purpose, we use the APECOSM-E model to map the effects of climate change and commercial fishing on the distribution of skipjack tuna biomass in the three oceans, combined with a new bioeconomic module representing the rent or profit of skipjack fisheries. For forcing, we use Representative Concentration Pathway (RCP) 8.5, the highest emission scenario for greenhouse gas concentrations presented in the IPCC’s Fifth Assessment Report (AR5), and the IPCC Socioeconomic Shared Pathway (SSP) 3, which is characterized by low economic development and a strong increase in the world population. We first investigate the impact of climate change on regional skipjack abundance, catches and profits in three oceans (Atlantic, Indian and Pacific) in 2010, 2050 and 2095. We then study the effects of three management strategies (maximum sustainable yield or MSY, maximum economic yield or MEY, and zero rent or ZR) on the future distribution of fishing fleets between oceans and on global economic rent.Our model projections for 2050 and 2095 show an increase in global skipjack biomass compared to 2010 and major changes in its distribution, impacting local and regional fishing efforts. The Pacific Ocean will continue to dominate the skipjack market.In our modeling of management strategies, the currently predominant MSY strategy would have been unprofitable in 2010, due to a decreased catch per unit effort (CPUE). In the future, however, technological developments should increase fishing efficiency and make MSY profitable.In all the scenarios, a MEY strategy is more profitable than MSY but leads to the lowest catches and the highest prices. This raises ethical questions in a world where food security may become a top priority.In the scenarios where MSY generates an economic loss (e.g. 2010), a ZR strategy allows global stocks to be exploited at high but still profitable levels. Conversely, in the scenarios where MSY is profitable, (e.g. 2095) ZR leads to overfishing and smaller global catches.We conclude that the most appropriate management strategy at any time is likely to change as environmental and socioeconomic conditions evolve. The decision to follow one or other strategy is a complex one that must be regularly reviewed and updated.  相似文献   
14.
15.
The catch and effort data analysis(CEDA) and ASPIC(a stock assessment production model incorporating covariates) computer software packages were used to estimate the maximum sustainable yield(MSY) from the catch and effort data of Greater lizardfish Saurida tumbil fishery of Pakistan from 1986 to 2009. In CEDA three surplus production models of Fox, Schaefer and Pella-Tomlinson were used. Here initial proportion(IP) of 0.5 was used because the starting catch was roughly 50% of the maximum catch. With IP = 0.5, the estimated MSY from Fox model were 20.59 mt and 38.16 mt for normal and log-normal error assumptions, while the MSY from Schaefer and Pella-Tomlinson were 60.40, 60.40 and 60.40 mt, for normal, log-normal and gamma error assumptions respectively. The MSY values from Schaefer and Pella-Tomlinson models of three error assumptions were the same. The R2 values from those three models were above 0.6. When IP = 0.5, the MSY values estimated from ASPIC from Fox were 132 mt, and from logistic model were 69.4 mt, with R2 value above 0.8. Therefore we suggest the MSY of S. tumbil fishery from Pakistan to be 60–70 mt, which is higher than the latest catch, thus we would recommend that the fishing efforts for this fishery may be kept at the current level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号