首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
地球物理   6篇
天文学   9篇
  2019年   1篇
  2016年   1篇
  2013年   1篇
  2008年   3篇
  2006年   3篇
  2005年   1篇
  1998年   4篇
  1994年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
11.
The fluxes of extreme ultraviolet (EUV) and soft X-ray emission are key parameters for modelling the ionosphere and upper atmosphere. A new aspect is considered in using these fluxes for diagnostics and short-term prediction of proton radiation danger from the flare. The EUV (λ < 105 nm) and soft X-ray (0.1–0.8 nm) fluxes were compared for two types of solar flares. The first type is followed by a strong enhancement in solar energetic (E >10 MeV) proton flux, the second is not followed by any enhancement in proton flux. It was discovered that the flare UV flux was considerably higher for flares with protons than for those without protons. Soft X-ray fluxes were approximately equal in both cases. An excess of EUV emission in proton flares grows with increasing proton flux. An analytic expression was found for the growth in proton flux as a function of the excess of EUV radiation at a given X-ray flux. These results can be used in predicting flare radiation danger.  相似文献   
12.
The relations between variations of far UV (FUV) emission in 115–210 nm waveband and L 121.6 nm and F10.7 are studied. The changes of FUV flux are found to lag changes of F10.7 - as a rule for 1 day. It is shown that such a difference may be caused by two factors: 1) differences between the rates of decrease of local sources' (active regions) brightness in FUV and 10.7 cm; 2) differences between limb-darkening curves for different wavelengths. One may expect the fluxes at different wavelengths to exhibit phase shifts of one relative to another. Cross-correlation analysis reveals no time-delay between emission fluxes within the FUV waveband, in spite of different laws for limb-brightening (darkening) for different spectral intervals. The absence of a phase delay can be caused by relatively small contribution of active regions to the flux of the whole Sun at these wavelengths. Thus the Lyman-alpha line intensity variation reflects variations of Solar FUV emission more precisely than F10.7. Therefore, using the L intensity for flux intensity calculations of other FUV wavelengths is preferable to using the F10.7 index.  相似文献   
13.
For the 10–30 nm interval within the extreme UV region of the solar spectrum, there are no commonly accepted views on the spectral composition and absolute magnitudes of the radiation intensity due to the lack of reliable data. This region is connected with characteristics of the ionosphere heat regime, photoelectron spectrum parameters and E–F valley characteristics. For estimating the solar radiation flux by the indirect route within the spectral region from 10 to 30 nm, which is difficult for direct measurements, it is suggested to use data on the electron concentration in the E-region maximum and E–F valley. Taken from empirical models, the data on these parameters were correlated with theoretical calculations of height profiles of electron concentration in the ionosphere. Based on the proportion between electron concentration in the E-layer maximum and E–F valley minimum, the solar radiation flux within the 10–30 nm region was shown to be 2.5 times greater than that obtained in measurements on board the ‘AE–E’ and ‘AE–C’ satellites. The results are used for correcting model spectra of the extreme UV radiation.  相似文献   
14.
The effects of hysteresis, which is a manifestation of ambiguous relationships between different solar activity indices during the rising and declining phases of solar cycles, are analyzed. The paper addresses the indices characterizing radiation from the solar photosphere, chromosphere, and corona, and the ionospheric indices. The 21st, 22nd, and 23rd solar cycles, which significantly differ from each other in amplitude, exhibit different extents of hysteresis.  相似文献   
15.
The accuracy limitations of critical frequency predictions in the ionospheric F2 layer are considered, which arise due to random variations in the Sun’s extreme UV radiation during the month. An analysis of δf (relative values of monthly rms scatters of the F2-layer critical frequencies) and the appropriate δu values (monthly rms scatters of extreme UV radiation) has shown their dependence on the solar activity level. A conclusion is drawn that when prognostic models of monthly medians are used for forecasting foF2 for a particular date, the error can hardly be less than ~7% at low solar activity and ~15% at a higher solar activity level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号