首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
地球物理   2篇
地质学   35篇
  2019年   1篇
  2017年   1篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   4篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  1999年   1篇
  1995年   3篇
排序方式: 共有37条查询结果,搜索用时 218 毫秒
11.
The Variscan Hauzenberg pluton consists of granite and granodiorite that intruded late- to postkinematically into HT-metamorphic rocks of the Moldanubian unit at the southwestern margin of the Bohemian Massif (Passauer Wald). U–Pb dating of zircon single-grains and monazite fractions, separated from medium- to coarse-grained biotite-muscovite granite (Hauzenberg granite II), yielded concordant ages of 320 ± 3 and 329 ± 7 Ma, interpreted as emplacement age. Zircons extracted from the younger Hauzenberg granodiorite yielded a 207Pb–206Pb mean age of 318.6 ± 4.1 Ma. The Hauzenberg granite I has not been dated. The pressure during solidification of the Hauzenberg granite II was estimated at 4.6 ± 0.6 kbar using phengite barometry on magmatic muscovite, corresponding to an emplacement depth of 16-18 km. The new data are compatible with pre-existing cooling ages of biotite and muscovite which indicate the Hauzenberg pluton to have cooled below T = 250–400 °C in Upper Carboniferous times. A compilation of age data from magmatic and metamorphic rocks of the western margin of the Bohemian Massif suggests a west- to northwestward shift of magmatism and HT/LP metamorphism with time. Both processes started at > 325 Ma within the South Bohemian Pluton and magmatism ceased at ca. 310 Ma in the Bavarian Oberpfalz. The slight different timing of HT metamorphism in northern Austria and the Bavarian Forest is interpreted as being the result of partial delamination of mantle lithosphere or removal of the thermal boundary layer.  相似文献   
12.
A small body of mafic texturally and compositionally varied igneous intrusive rocks corresponding to redwitzites occurs at Abertamy in the Western pluton of the Krušné hory/Erzgebirge granite batholith (Czech Republic). It is enclosed by porphyritic biotite granite of the older intrusive suite in the southern contact zone of the Nejdek-Eibenstock granite massif. We examined the petrology and geochemistry of the rocks and compared the data with those on redwitzites described from NE Bavaria and Western Bohemia.The redwitzites from Abertamy are coarse- to medium-grained rocks with massive textures and abundant up to 2 cm large randomly oriented biotite phenocrysts overgrowing the groundmass. They are high in MgO, Cr and Ni but have lower Rb and Li contents than the redwitzites in NE Bavaria. Compositional linear trends from redwitzites to granites at Abertamy indicate crystal fractionation and magma mixing in a magma chamber as possible mechanisms of magma differentiation. Plots of MgO versus SiO2, TiO2, Al2O3, FeO, CaO, Na2O, and K2O indicate mainly plagioclase and orthopyroxene fractionation as viable mechanisms for in situ differentiation of the redwitzites.The porphyritic biotite monzogranite enclosing the redwitzite is the typical member of the early granitic suite (Older Intrusive Complex, OIC ) with strongly developed transitional I/S-type features. The ages of zircons obtained by the single zircon Pb-evaporation method suggest that the redwitzites and granites at Abertamy originated during the same magmatic period of the Variscan plutonism at about 322 Ma.The granitic melts have been so far mainly interpreted to be formed by heat supply from a thickened crust or decompression melting accompanying exhumation and uplift of overthickened crust in the Krušné hory/Erzgebirge due to a previous collisional event at ca. 340 Ma. The presence of mafic bodies in the Western pluton of the Krušné hory/Erzgebirge batholith confirms a more significant role of mantle-derived mafic magmas in heating of the sources of granitic melts than previously considered.  相似文献   
13.
14.
Geochemical and Nd-Sr isotopic compositions and U-Pb zircon ages of two Variscan granites (Neunburg and Oberviechtach) from southern Oberpfalz, NW Bohemian massif, have been investigated in order to place constraints on their formation and on the crustal reworking. Both granites exhibit similar mineralogical, chemical and isotopic characteristics. They have peraluminous compositions (A/CNK ratios 1.2-1.3) and display high K2O/Na2O ratios of 2.2-2.3, consistent with typical S-type granites. In terms of trace elements, they show an enrichment of LREE and strong fractionation between LREE and HREE (LaN/YbN ratios 46 to 60). Compared with the primordial mantle, distinct negative anomalies of several trace elements (Ba, Sr, Nb and Ti) are also observed in both granites. They are further characterised by low initial kNd-values of ш.2 to ъ.2 and high initial 87Sr/86Sr ratios of 0.7114 to 0.7147. Zircon U-Pb data indicate that the intrusion of both granites shortly post-dates the HT-LP metamorphism of the Moldanubian basement and crystallised at about 320 Ma. The samples studied contain zircons mostly having xenocrystic cores with diverse morphologies. These inherited zircons have Early Proterozoic to Early Palaeozoic ages. This points to melting of sources comprising substantial sedimentary rocks. The LaN/YbN and TbN/YbN ratios of both granites are the highest so far reported from granitoids within this region. Melting of lower crustal rocks leaving garnet as a restite phase in the source provides a viable mechanism to reproduce the REE characteristics.  相似文献   
15.
The Upper Cretaceous Torul pluton, located in the Eastern Pontides, is of sub-alkaline affinity and displays features typical of volcanic arc granitoids. It is a composite pluton consisting of granodiorite, biotite hornblende monzogranite, quartz monzodiorite, quartz monzonite and hornblende biotite monzogranite. The oldest syenogranite (77.9 ± 0.3 Ma) and the youngest quartz diorite form small stocks within the pluton. Samples from the granodiorites, biotite hornblende monzogranites, quartz monzodiorites, quartz monzonites and hornblende biotite monzogranites have SiO2 between 57 and 68 wt% and display high-K calc-alkaline, metaluminous to peraluminous characteristics. Chondrite-normalized REE patterns are fractionated (Lacn/Lucn = 6.0?14.2) with pronounced negative Eu anomalies (Eu/Eu* = 0.59–0.84). Initial ?Nd(i) values vary between ?3.1 and ?4.1, initial 87Sr/86Sr values between 0.7058 and 0.7072, and δ18O values between +4.4 and +7.3‰. The quartz diorites are characterized by relatively high Mg-number of 36–38, low contents of Na2O (2.3–2.5 wt%) and SiO2 (52–55 wt%) and medium-K calc-alkaline, metaluminous composition. Chondrite-normalized REE patterns are relatively flat [(La/Yb)cn =  2.8–3.3; (Tb/Yb)cn =  1.2] and show small negative Eu anomalies (Eu/Eu* = 0.74–0.76). Compared to the other rock types, radiogenic isotope signatures of the quartz diorites show higher 87Sr/86Sr (0.7075–0.7079) and lower ?Nd(i) (–4.5 to –5.3). The syenogranites have high SiO2 (70–74 wt%) and display high-K calc-alkaline, peraluminous characteristics. Their REE patterns are characterized by higher Lacn/Lucn (12.9) and Eu/Eu* (0.76–0.77) values compared to the quartz diorites. Isotopic signatures of these rocks [?Nd(i) =  ?4.0 to ?3.3; 87Sr/86Sr(i) =  0.7034?0.7060; δ18 O =  + 4.9 to + 8.2] are largely similar to the other rock types but differ from that of the quartz diorites. Fractionation of plagioclase, hornblende, pyroxene and Fe–Ti oxides played an important role in the evolution of Torul granitoids. The crystallization temperatures of the melts ranged from 800 to 900°C as determined from zircon and apatite saturation thermometry. All these characteristics, combined with low K2O/Na2O, low Al2O3/(FeOT + MgO + TiO2), and low (Na2O + K2O)/(FeOT + MgO + TiO2) ratios suggest an origin through dehydration melting of mafic lower crustal source rocks.  相似文献   
16.
The late Neogene to Quaternary Cappadocian Volcanic Province (CVP) in central Anatolia is one of the most impressive volcanic fields of Turkey because of its extent and spectacular erosionally sculptured landscape. The late Neogene evolution of the CVP started with the eruption of extensive andesitic-dacitic lavas and ignimbrites with minor basaltic lavas. This stage was followed by Quaternary bimodal volcanism. Here, we present geochemical, isotopic (Sr–Nd–Pb and δ18O isotopes) and geochronological (U–Pb zircon and Ar–Ar amphibole and whole-rock ages) data for bimodal volcanic rocks of the Ni?de Volcanic Complex (NVC) in the western part of the CVP to determine mantle melting dynamics and magmatic processes within the overlying continental crust during the Quaternary. Geochronological data suggest that the bimodal volcanic activity in the study area occurred between ca. 1.1 and ca. 0.2 Ma (Pleistocene) and comprises (1) mafic lavas consisting of basalts, trachybasalts, basaltic andesites and scoria lapilli fallout deposits with mainly basaltic composition, (2) felsic lavas consisting of mostly rhyolites and pumice lapilli fall-out and surge deposits with dacitic to rhyolitic composition. The most mafic sample is basalt from a monogenetic cone, which is characterized by 87Sr/86Sr = 0.7038, 143Nd/144Nd = 0.5128, 206Pb/204Pb = 18.80, 207Pb/204Pb = 15.60 and 208Pb/204Pb = 38.68, suggesting a moderately depleted signature of the mantle source. Felsic volcanic rocks define a narrow range of 143Nd/144Nd isotope ratios (0.5126–0.5128) and are homogeneous in Pb isotope composition (206Pb/204Pb = 18.84–18.87, 207Pb/204Pb = 15.64–15.67 and 208Pb/204Pb = 38.93–38.99). 87Sr/86Sr isotopic compositions of mafic (0.7038–0.7053) and felsic (0.7040–0.7052) samples are similar, reflecting a common mantle source. The felsic rocks have relatively low zircon δ18O values (5.6 ± 0.6 ‰) overlapping mantle values (5.3 ± 0.3 %), consistent with an origin by fractional crystallization from a mafic melt with very minor continental crustal contamination. The geochronological and geochemical data suggest that mafic and felsic volcanic rocks of the NVC are genetically closely related to each other. Mafic rocks show a positive trend between 87Sr/86Sr and Th, suggesting simultaneous assimilation and fractional crystallization, whereas the felsic rocks are characterized by a flat or slightly negative variation. High 87Sr/86Sr gneisses are a potential crustal contaminant of the mafic magmas, but the comparatively low and invariant 87Sr/86Sr in the felsic volcanics suggests that these evolved dominantly by fractional crystallization. Mantle-derived basaltic melts, which experienced low degree of crustal assimilation, are proposed to be the parent melt of the felsic volcanics. Geochronological and geochemical results combined with regional geological and geophysical data suggest that bimodal volcanism of the NVC and the CVP, in general, developed in a post-collisional extensional tectonic regime that is caused by ascending asthenosphere, which played a key role during magma genesis.  相似文献   
17.
18.
Silicic volcanism in the Andean Central Volcanic Zone (CVZ) produced one of the world's largest Neogene ignimbrite provinces. The largest and best-known CVZ ignimbrites are located on the Altiplano-Puna plateau north of 24 °S. Their compositions and huge erupted volumes suggest an origin by large-scale crustal melting, and present-day geophysical anomalies in this region suggest still active zones of partial melting in the middle crust. Farther south in the CVZ, the Cerro Galán complex erupted ignimbrites in the late Miocene and Pliocene that are quite similar in volume and composition to those from north of 24 °S and they have a similar origin. However, there are a great many other, smaller ignimbrites in the southern CVZ whose compositions and geodynamic significance are poorly known. These are the subject of this paper.  相似文献   
19.
The present-day North Chilean Coastal Cordillera between 18°30′S and 22°S records an important part of the magmatic evolution of the Central Andes during the Jurassic. Calc-alkaline to subordinate tholeiitic members from four rock groups with biostratigraphically constrained age display incompatible element pattern characteristic of convergent plate-margin volcanism, whereas alkaline basalts of one group occurring in the Precordillera show OIB-type trace element signatures. The correlation of biostratigraphic ages, regional distribution, and composition of the volcanic rocks provides a basis for the discussion on geochemical evolution and isotope ratios.Major and trace element distributions of the volcanic rocks indicate their derivation from mantle-derived melts. LILE and LREE enrichments in calc-alkaline basaltic andesites to dacites and some of the tholeiites hint at the involvement of hydrous fluids during melting and mobile element transport processes. A part of the Early Bajocian to ?Lower Jurassic and Oxfordian andesites and dacites are adakite-like rocks with a substantial participation of slab melt and are characterized by high Sr/Y ratios and low HREE contents. The Middle Jurassic tholeiitic and calc-alkaline basalts and basaltic andesites have been transported and partly stored within a system of deep-seated feeder fissures and crustal strike-slip faults before eruption.The isotopic composition of Sr (87Sr/86Sri=0.7032-0.7056) and Nd (εNdi=2.2-7.1) of the Jurassic volcanic rocks mostly fall in the range characteristic for mantle melts although some crustal components may have been involved. A few samples show slightly more radiogenic Sr isotopic composition, which is probably due to interaction with ancient sea-water. The Pb isotopic composition of the arc rocks is uncoupled from the isotopic composition of Sr and Nd and is dominated by the crustal component. Since the Cretaceous and Modern arc volcanic rocks show Pb isotopic compositions that can be largely explained by in situ Pb isotope growth of Jurassic arc volcanic rocks, we argue that the various Andean arc systems between 18°30′S and 22°S formed on the same type of basement.Most of the investigated samples have high Ba, Zr, and Th concentrations compared to island arc mafic volcanic rocks. About 20% of the Jurassic arc volcanics comprise of dacitic to rhyolitic rocks. These characteristics combined with the Pb isotopic composition that shows the influence of a Palaeozoic (or partly older) basement point to a continental margin setting for the North Chilean Jurassic arc. The distribution of the magmatic rocks throughout time, their textures, and the character of intercalated sedimentary rocks reflect westward movement of the magma sources and of the arc/back-arc boundary relative to the current coast line during the Early Bajocian on a broad front between 19°30′ and 21°S.  相似文献   
20.
Apatite fission-track (AFT) dating applied to uplifted Variscan basement blocks of the Bavarian Forest is employed to unravel the low-temperature history of this segment of the Bohemian Massif. Twenty samples were dated and confined track lengths of four samples were measured. Most samples define Cretaceous APT ages between 110 and 82 Ma (Albian to Campanian) and three samples give older ~148–140 Ma (Jurassic–Cretaceous boundary) ages. No discernible regional age variations exist between the areas north-east and south-west of the Pfahl shear zone, but >500 m post-Jurassic and post-Cretaceous vertical offsets along this and other faults can be inferred from elevation profile analyses. The AFT ages clearly postdate the Variscan exhumation history of the Bavarian Forest. Thermal modeling reveals that the ages are best explained by a slight reheating of the basement rocks to temperatures within the apatite partial annealing zone during the middle and late Jurassic and/or by late Cretaceous marine transgression causing burial heating, which affected marginal low-lying areas of the Bohemian Massif and the Bavarian Forest. Late Jurassic period was followed by enhanced cooling through the 120–60 °C temperature interval during the subsequent exhumation phase for which denudation rates of ~100 m myr?1 were calculated. On a regional scale, Jurassic–Cretaceous AFT ages are ubiquitous in marginal structural blocks of the Bohemian Massif and seem to reflect the exhumation of these zones more distinctly compared to central parts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号