首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   5篇
  国内免费   17篇
测绘学   3篇
大气科学   7篇
地球物理   68篇
地质学   28篇
海洋学   25篇
综合类   1篇
自然地理   8篇
  2023年   1篇
  2022年   1篇
  2020年   5篇
  2019年   5篇
  2018年   3篇
  2017年   2篇
  2016年   9篇
  2015年   3篇
  2014年   10篇
  2013年   6篇
  2012年   3篇
  2011年   12篇
  2010年   6篇
  2009年   10篇
  2008年   4篇
  2007年   2篇
  2006年   5篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1977年   1篇
排序方式: 共有140条查询结果,搜索用时 31 毫秒
11.
邵锡斌  吴莹  胡俊  鲍红艳 《海洋与湖沼》2014,45(6):1288-1294
利用气相色谱法对长江口及其邻近海域的表层颗粒态木质素(p-lignin)进行测定和分析,结合粒度、有机碳(OC%)、叶绿素a(Chl a)、碳稳定同位素(δ13C)等参数研究颗粒态有机物的夏季分布,并对其分布影响因素进行了初步分析。结果表明,悬浮颗粒物粒度组成以粘土和粉砂为主,平均粒径为7.9μm;OC%的值为0.57—7.41%,Chl a的值为0.35—3.71μg/L,δ13C的值为-25.7‰—–16.6‰,在口门外水华站位出现OC%、Chl a和δ13C的最大值,表明浮游生物的现场生产是主要贡献;紫丁香基酚类(S)、香草基酚类(V)和肉桂基酚类(C)8种木质素酚单体的含量Λ8(相对于总有机碳的含量)为0.0406—1.47mg/100mg OC;紫丁香基系列与香草基系列的质量比值(S/V)的分布范围较宽,为0.5—1.6之间,均值为0.8;肉桂基含量与香草基含量比值(C/V)的分布范围为0.02—0.2之间,均值为0.09;香草基酚类的酸醛比值[(Ad/Al)v]在0.24—2.30之间。盐度、总悬浮颗粒物(TSM)浓度是控制长江口内区与邻近海域颗粒态有机物来源与分布差异的重要控制因素,颗粒态木质素在向海输送过程中还会受到矿物组分、生物降解、浮游生物现场生产等各种因素的作用,使其组成成分和性质发生改变。木质素等参数表明最大浑浊带尽管对颗粒态有机物向海输送有改造作用,但是影响区域有限。  相似文献   
12.
长江口盐度梯度下不同形态碳的分布、来源与混合行为   总被引:1,自引:0,他引:1  
河口碳的生物地球化学过程是全球碳循环的重要组成。通过测定溶解无机碳(DIC)及其稳定同位素丰度(δ13CDIC),溶解有机碳(DOC),有色溶解有机物(CDOM),颗粒有机碳(POC)及其稳定同位素丰度(δ13CPOC)与元素比值(N/C)及相关指标,研究了2014年7月长江口盐度梯度下不同形态碳的分布、来源和混合行为。结果表明,DIC浓度、DOC浓度、POC含量分别为1 583.2~1 739.6 μmol/L,128.4~369.4 μmol/L和51.2~530.8 μmol/L,这些不同形态碳及CDOM的荧光组分的分布模式相似,均是从口内到口外,整体呈现先增大后减小的趋势,并与盐度呈现非保守混合行为。添加作用主要发生在在口门处最大浑浊带附近。与含量相反,从口内到口外,δ13CDIC和δ13CPOC均呈现逐渐减小再增大的趋势,在口门附近达到最低值,分别为-9.7‰和-26.7‰。在口门附近不同形态碳含量上升及δ13CDIC、δ13CPOC的降低可能主要与沉积物再悬浮及微生物作用有关。基于蒙特卡洛模拟的三端元混合模型的结果显示,河口内外POC来源变化明显,口内POC以陆源有机碳贡献为主,平均为62.3%,口外海源贡献逐渐增加。CDOM相关参数结果表明长江口CDOM主要来自陆源输入,海源及人类活动等也对其产生影响。  相似文献   
13.
花东海盆浊流沉积的磁性特征及其环境意义   总被引:2,自引:0,他引:2       下载免费PDF全文
对取自台湾以东花东海盆GX168孔的浊流沉积物进行系统的岩石磁学研究,揭示其沉积学和岩石磁学特征,分析其物源和形成机制.研究结果显示,剖面上共识别出12层浊流沉积物,其分布存在规律,下部350~700cm共发育11层浊流沉积物,而0~350cm仅出现1层浊流沉积物.浊流沉积物粒径明显较背景沉积物粗,石英、长石含量更高,底部与下伏背景沉积呈突变接触,顶部与上覆背景沉积呈渐变接触,内部发育典型的正粒序韵律结构.浊流沉积物和背景沉积物具有相似的磁学特征,两者均以磁铁矿为主要载磁矿物类型,且磁铁矿颗粒均以准单畴和多畴颗粒为主.同时,两者也存在一定差异,浊流沉积物中磁铁矿较背景沉积物更为富集,磁化率和饱和等温剩磁更强,磁铁矿粒径更粗,这与浊流沉积物原始沉积区更靠近物源区有关.花东海盆浊流沉积形成的诱发机制可能是末次冰期以来频发的海平面波动造成陆坡之上沉积物重力失稳,导致陆坡沉积物向海盆搬运.  相似文献   
14.
Traveling and stationary internal hydraulic jumps in density currents with positive or negative entrainment coefficients were analyzed based on simple assumptions. An expression of internal hydraulic jumps with entrainment coefficients was derived. Experimental data, published in literature, of stationary internal hydraulic jumps in turbid, thermal and saline density currents including measured values of water entrainment were used to compare with theory. Comparison was also made of traveling internal hydraulic jumps between measured data and theory.  相似文献   
15.
A numerical model has been developed for the simulation of turbidity currents driven by nonuniform, non cohesive sediment and flowing over a complex three dimensional submarine topography. The model is based on an alternative approach known as Cellular Automata paradigm. The model is validated by comparing a simulation with a reported field-scale event. The chosen case is a turbidity current which occurred in Capbreton Canyon and was initiated by a storm in December 1999. Using data from recent oceanographic cruises, the deposit of the event has been precisely described, which constrain values of model parameters. The model simulates the 1999 turbidity current over the actual canyon topography and related turbidite using three different types of particle. The model successfully simulates areas of erosion and deposition in the canyon. It predicts the vertical and longitudinal grain size evolution, and shows that the fining-up sequence can be deposited by several phases of deposition and erosion related to the current energetic variation during its evolution. This result could explain the presence of intrabed contacts or the frequent lack of facies in Bouma sequences.  相似文献   
16.
A mild bleaching event (9.2% prevalence) at Palmyra Atoll occurred in response to the 2009 ENSO, when mean water temperature reached 29.8-30.1 °C. Prevalence among both abundant and sparse taxa varied with no clear pattern in susceptibility relating to coral morphology. Seven taxon-specific models showed that turbidity exacerbated while prior exposure to higher background temperatures alleviated bleaching, with these predictors explaining an average 16.3% and 11.5% variation in prevalence patterns, respectively. Positive associations occurred between bleaching prevalence and both immediate temperature during the bleaching event (average 8.4% variation explained) and increased sand cover (average 3.7%). Despite these associations, mean unexplained variation in prevalence equalled 59%. Lower bleaching prevalence in areas experiencing higher background temperatures suggests acclimation to temperature stress among several coral genera, while WWII modifications may still be impacting the reefs via shoreline sediment re-distribution and increased turbidity, exacerbating coral bleaching susceptibility during periods of high temperature stress.  相似文献   
17.
The relative abundance of the different picoplankton components (eukaryotic picophytoplankton (Peuk), picocyanobacteria (Pcy) and bacterioplankton), and their relationships with the lake conditions were studied in three types of shallow lakes from the Pampa Plain (Argentina) that differ in their optical properties: clear-vegetated, phytoplankton-turbid and inorganic-turbid. All the selected lakes, but one, are characterized by their different alternative steady state (clear-vegetated and phytoplankton-turbid water phases) following the model proposed by Scheffer et al. (1993).Autotrophic and heterotrophic picoplankton abundances were analyzed seasonally in relation to environmental variables. All the lakes presented high concentrations of total nitrogen (TN) (>229 μg L−1), total phosphorus (TP) (>46 μg L−1) and dissolved organic carbon (DOC) (>13.7 mg L−1). Clear-vegetated lakes were characterized by vertical diffuse PAR (photosynthetic active radiation) attenuation coefficient (kdPAR) lower than 11 m−1, whereas inorganic-turbid lake always showed values higher than 21.1 m−1. The euphotic zone depth (Z1%) was wider in clear-vegetated lakes (40–140 cm) and thinner in the inorganic-turbid (10–20 cm). The phytoplankton-turbid lakes presented a wide range in the values of these variables (kdPAR: 5.2–35.8 m−1; Z1%: 10–90 cm). Phytoplankton chlorophyll-a (Chl-a) strongly differed, ranging from 1.6 to 334.6 μg L−1. Picophytoplankton was mainly represented by phycocianine-rich (PC-rich) Pcy in all cases, dominating over Peuk algae. The total and relative abundances of eukaryotic picophytoplankton, Pcy and bacterioplankton, as well as the size structure of the phytoplankton community differed among the water bodies. In general, clear-vegetated water bodies exhibited similar abiotic characteristics, picophytoplankton/bacterioplankton ratios, and phytoplankton size structure. Contrarily, no clear trend was identified for the group of turbid lakes. The contrasting results obtained for the importance of the picoplankton components in phytoplankton-turbid shallow lakes evidence that the availability of the energetical and nutrient resources cannot be solely considered to predict their relative importance in this type of shallow lake.  相似文献   
18.
Here we present results from a suite of laboratory experiments that highlight the influence of channel sinuosity on the depositional mechanics of channelized turbidity currents. We released turbidity currents into three channels in an experimental basin filled with water and monitored current properties and the evolution of topography via sedimentation. The three channels were similar in cross-sectional geometry but varied in sinuosity. Results from these experiments are used to constrain the run-up of channelized turbidity currents on the outer banks of moderate to high curvature channel bends. We find that a current is unlikely to remain contained within a channel when the kinetic energy of a flow exceeds the potential energy associated with an elevation gain equal to the channel relief; setting an effective upper limit for current velocity. Next we show that flow through bends induces a vertical mixing that redistributes suspended sediment back into the interiors of depositional turbidity currents. This mixing counteracts the natural tendency for suspended sediment concentration and grain size to stratify vertically, thereby reducing the rate at which sediment is lost from a current via deposition. Finally, the laboratory experiments suggest that turbidity currents might commonly separate from channel sidewalls along the inner banks of bends. In some cases, sedimentation rates and patterns within the resulting separation zones are sufficient to construct bar forms that are attached to the channel sidewalls and represent an important mechanism of submarine channel filling. These bar forms have inclined strata that might be mistaken for the deposits of point bars and internal levees, even though the formation mechanism and its implications to channel history are different.  相似文献   
19.
Ocean circulation influences nearly all aspects of the marine ecosystem. This study describes the water circulation patterns on time scales from hours to years across Torres Strait and adjacent gulfs and seas, including the north of the Great Barrier Reef. The tridimensional circulation model incorporated realistic atmospheric and oceanographic forcing, including winds, waves, tides, and large-scale regional circulation taken from global model outputs. Simulations covered a hindcast period of 8 years (i.e. 01/03/1997–31/12/2004), allowing the tidal, seasonal, and interannual flow characteristics to be investigated. Results indicated that the most energetic current patterns in Torres Strait were strongly dominated by the barotropic tide and its spring-neap cycle. However, longer-term flow through the strait was mainly controlled by prevailing winds. A dominant westward drift developed in summer over the southeasterly trade winds season, which then weakened and reversed in winter over the northwesterly monsoon winds season. The seasonal flow through Torres Strait was strongly connected to the circulation in the north of the Great Barrier Reef, but showed little connectivity with the coastal circulation in the Gulf of Papua. Interannual variability in Torres Strait was highest during the monsoon period, reflecting variability in wind forcing including the timing of the monsoon. The characteristics of the circulation were also discussed in relation to fine sediment transport. Turbidity level in Torres Strait is expected to peak at the end of the monsoon, while it is likely to be at a low at the end of the trade season, eventually leading to a critically low bottom light level which constitutes a severe risk of seagrass dieback.  相似文献   
20.
The contribution of terrigenous organic matter (TOM) to high molecular weight dissolved and particulate organic matter (POM) was examined along the salinity gradient of the Delaware Estuary. Dissolved organic matter (DOM) was fractionated by ultrafiltration into 1–30 kDa (HDOM) and 30 kDa–0.2 μm (VHDOM) nominal molecular weight fractions. Thermochemolysis with tetramethylammonium hydroxide (TMAH) was used to release and quantify lipids and lignin phenols. Stable carbon isotopes, fatty acids and lignin content indicated shifts in sources with terrigenous material in the river and turbid region and a predominantly algal/planktonic signal in the lower estuary and coastal ocean. Thermochemolysis with TMAH released significant amounts of short chain fatty acids (C9–C13), not seen by traditional alkaline hydrolysis, which appear to be associated with the macromolecular matrix. Lignin phenol distributions in HDOM, VHDOM and particles followed predicted sources with higher concentrations in the river and turbid region of the estuary and lower concentrations in the coastal ocean. TOM comprised 12% of HDOM within the coastal ocean and up to 73% of HDOM within the turbid region of the estuary. In the coastal ocean, TOM from high molecular weight DOM comprised 4% of total DOC. The annual flux of TOM from the Delaware Estuary to the coastal ocean was estimated at 2.0×1010 g OC year−1 and suggests that temperate estuaries such as Delaware Bay can be significant sources of TOM on a regional scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号