首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   4篇
  国内免费   6篇
大气科学   74篇
地球物理   4篇
地质学   6篇
自然地理   5篇
  2024年   2篇
  2023年   11篇
  2022年   22篇
  2021年   13篇
  2020年   5篇
  2019年   21篇
  2018年   12篇
  2017年   3篇
排序方式: 共有89条查询结果,搜索用时 13 毫秒
11.
城市和湖泊对区域降水都有显著的影响,但二者对暴雨过程的相对影响尚需定量评估。为了揭示城市与湖泊相对及共同作用对暴雨过程的影响,本文选取华东地区为研究区域,利用WRF模式,针对2015年6月27日一次江淮梅雨期间由低空切变线引发的暴雨过程,进行了敏感性试验对比研究。结果表明,太湖和周围城市的存在会增强研究区域的降水,并且城市的影响要大于太湖;太湖和周围城市与其他区域的温度差会导致地面风场在城市及其附近区域辐合,进而产生强对流;形成的强地面辐合线还会影响低空切变线的生成位置,并在其移动过程中相互调整、相互增强。总而言之,太湖与周围城市的共同作用对于地面风场辐合以及低空切变线的形成与强度都存在重要影响,进而影响本次暴雨的位置和强度。  相似文献   
12.
作为全球能量水分循环的关键区域,青藏高原(下称高原)气候变化对高原及周边地区气候与环境变化具有重要影响.本文从高原表面增暖、辐射变化、降水的多尺度变率、表面风速及环境变化方面回顾了高原近60年来气候变化及其环境效应与物理机制的研究进展,并基于再分析和台站观测资料讨论了近10余年来高原表面温度和风速变化的特征及原因.最后...  相似文献   
13.
湖泊对气候变化非常敏感,是气候变化的指示器。青藏高原湖泊众多,但由于观测数据的缺乏,目前对全球变暖背景下高原湖泊热力状况的研究依然不足且多为短期研究。利用中国科学院青藏高原研究所(ITPCAS)开发的中国区域高时空分辨率地面气象要素驱动数据集、MODIS地表温度数据、青海湖浮标观测数据,分析了Freshwater Lake Model(简称Flake模式)在青海湖的适用性,揭示了青海湖热力状况对气候变化的响应。结果表明,Flake模式能够很好的模拟出青海湖的热力状况,但对夏季与秋季的湖表面水温(特别是夜间)模拟偏高,部分是驱动数据误差造成的,修正驱动数据后模拟效果得到改善。对1989 2012年Flake模拟的湖表面温度与ITPCAS数据不同驱动要素之间的年际变化趋势与相关性进行分析,发现青海湖表面温度呈现上升趋势,与气温、向下长波辐射有较好的正相关性,而与风速负相关。内部热力状况的模拟结果显示,青海湖混合层温度基本全年呈上升趋势,其中5、6月及12月增温最显著;湖泊底层温度在5月以及12月的两次季节性翻转时期呈上升趋势,在6 10月湖水分层期呈下降趋势,分层期湖泊上层温度升高会加强湖水层结稳定性,使湖水混合减弱,导致底层温度下降。  相似文献   
14.
利用黄土高原地区加强观测期探空资料和大气红外探测器(Atmospheric Infrared Sounder,AIRS)反演的温度、相对湿度廓线资料,评估了AIRS反演产品在黄土高原的适用性,以及利用AIRS温度廓线计算边界层高度的可行性。结果表明,各种边界层高度计算方法相关性显著,平均高度差异一般不超过200 m;Richardson数临界值的选取对确定边界层高度的影响不大。AIRS反演的大气温度和相对湿度均能很好地反映环境温湿的变化;温度平均偏差在±1 K以内,均方根误差一般不超过2 K;AIRS反演的地面气温误差相对较大,平均偏差和均方根误差分别为-1.68 K和3.32 K,并且会影响边界层高度的确定;AIRS相对湿度平均偏差在±10%以内,均方根误差不超过20%。利用Parcel法估计的边界层高度结果显示,根据AIRS反演的温度廓线确定的AIRS边界层高度低于利用探空观测资料确定的边界层高度,但能较好地再现边界层高度的变化,在没有探空数据时,可以用AIRS反演的温度廓线确定边界层高度。  相似文献   
15.
再分析土壤温湿度资料在青藏高原地区适用性的分析   总被引:1,自引:0,他引:1  
利用2010-2016年中国科学院西北生态环境资源研究院青藏高原土壤温度与湿度监测网观测数据在不同气候区和植被条件的4个地区(阿里、狮泉河、那曲和玛曲)对8套土壤温湿度再分析产品(ERA-Interim、CFSR、CFSv2、JRA-55、GLDAS-NOAH、GLDAS-CLM、GLDAS-MOS和GLDAS-VIC)进行对比分析,使用相关系数、均方根误差、平均偏差、无偏均方根误差和标准差比等统计参数综合比较各土壤温湿度产品对观测值的模拟性能,寻找适用于青藏高原地区的长时间大尺度土壤温湿度产品。结果表明:对于土壤温度,GLDAS-CLM产品在大部分站点能够合理再现两层(0~10 cm和10~40 cm)土壤温度随时间的动态过程和变化细节,虽然结果略高估观测土壤温度值,但在数值上与观测值较为接近,并且与观测值呈显著正相关关系。对于土壤湿度,土壤冻结期再分析产品不能表现土壤湿度的动态变化特征;非冻结期GLDAS-NOAH和GLDAS-CLM产品能够较好的刻画各地区两层土壤湿度随时间变化的动态过程特征,不论在误差统计量还是相关性方面都表现为最优值。GLDAS-MOS、GLDASVIC、ERA-interim和CFSv2产品虽然在一定程度上能够展现部分地区土壤湿度的变化趋势,但对观测值的刻画效果并不理想,而JRA-55产品无法描绘各地区土壤温湿度变化。  相似文献   
16.
湖泊对气候变化非常敏感,是气候变化的指示器。青藏高原湖泊众多,但由于观测数据的缺乏,目前对全球变暖背景下高原湖泊热力状况的研究依然不足且多为短期研究。利用中国科学院青藏高原研究所(ITPCAS)开发的中国区域高时空分辨率地面气象要素驱动数据集、MODIS地表温度数据、青海湖浮标观测数据,分析了Freshwater Lake Model(简称Flake模式)在青海湖的适用性,揭示了青海湖热力状况对气候变化的响应。结果表明,Flake模式能够很好的模拟出青海湖的热力状况,但对夏季与秋季的湖表面水温(特别是夜间)模拟偏高,部分是驱动数据误差造成的,修正驱动数据后模拟效果得到改善。对1989 2012年Flake模拟的湖表面温度与ITPCAS数据不同驱动要素之间的年际变化趋势与相关性进行分析,发现青海湖表面温度呈现上升趋势,与气温、向下长波辐射有较好的正相关性,而与风速负相关。内部热力状况的模拟结果显示,青海湖混合层温度基本全年呈上升趋势,其中5、6月及12月增温最显著;湖泊底层温度在5月以及12月的两次季节性翻转时期呈上升趋势,在6 10月湖水分层期呈下降趋势,分层期湖泊上层温度升高会加强湖水层结稳定性,使湖水混合减弱,导致底层温度下降。  相似文献   
17.
利用洮河上游碌曲、中游岷县和下游临洮3站降水和气温观测资料,结合中游和下游2个水电站年径流量资料,分析近50 a来洮河流域气候及干旱变化特征。结果表明:近50 a洮河流域年平均气温整体呈现显著上升趋势,尤其在1997年前后明显升温,上游碌曲增幅最大,中游岷县、下游临洮增幅明显偏低,3站气温倾向率分别为0.43、0.15、0.14℃·(10 a)~(-1),且在1990年代中期以后发生突变;年降水量整体呈缓慢减少趋势,但1990年代中期以后有微弱增加,与年径流量变化基本一致;干旱指数显示,近41 a洮河流域大多数年份无旱,仅个别年份出现干旱,且程度较轻,下游地区干旱相对较重。  相似文献   
18.
冬半年中纬度西风带在青藏高原地区产生南北两支绕流,即动力性的南支槽和北支脊,这样的绕流对其周边及下游天气气候有重要影响。本文先分别用600 hPa动力性的南支槽和北支脊各自所在的关键区域的平均涡度与多年平均涡度的差异,表示南支槽和北支脊的强度,然后直观地将南支槽和北支脊强度之差定义为高原绕流强度指数,利用相关分析和合成分析等方法,讨论高原绕流在冬半年平均(10月至次年4月)、秋季、冬季和春季的演变与中国降水和气温的关系。结果表明:高原绕流在冬半年10月至次年4月期间定常的存在,年际变化明显,冬季最强。全球变暖背景下,各时间段绕流强度的变化与中国西北、西南和华南部分地区的降水和气温的关系明显,特别是在冬季。降水关联性最好的是中国西南地区和华南地区,与西北、西南和东北地区的气温变化关系明显。探讨各时间段各层的大尺度大气环流和水汽通量散度、垂直速度等物理量的异常场,亚洲大部分地区自下而上的正压性特征显著,可以很好地解释各时间段高原绕流的异常与中国降水和气温关系。绕流的异常也可能是引发中国冬半年期间高影响天气的原因之一。  相似文献   
19.
北大西洋-东亚和北亚(简称NAENA)型遥相关是夏季欧亚大陆对流层上层经向风异常的第二主导模态,对欧亚大陆多尺度气候变率有显著影响。本文在分析NAENA型维持的动力学机制的基础上,研究了该遥相关型对新疆夏季旱涝异常的影响及其可能机制。大气波列的涡度收支分析表明,气候态的旋转纬向风引起的扰动涡度平流可以被扰动旋转经向风引起的平均涡度平流所补偿。能量转换过程分析表明,该大气波列有效地从平均流中提取有效位能,通过斜压能量转换过程得以维持。大西洋海温异常三极子模态则是NAENA型维持的重要外强迫因子。回归分析表明NAENA型遥相关能通过促进南疆夏季降水,显著影响新疆的旱涝异常。NAENA型位于中亚的气旋性低压一方面增强了南疆地区的垂直上升运动,同时气旋性环流将更多的水汽输送到该地区,有利于水汽在对流层中低层的异常辐合,进而对南疆的降水有促进作用。  相似文献   
20.
《高原气象》2021,40(3):455-471
选取青藏高原(下称高原)东部玛曲、玛多和垭口3个野外站点的观测资料,针对不连续积雪过程,研究高原东部不同季节的积雪过程对地表能量和土壤水热的影响。结果表明:受积雪高反照率的影响,高原东部地区各季节降雪后净短波辐射减小,净辐射较降雪前减小60%~140%;积雪积累期内感热、潜热及土壤热通量均减小,感热通量和土壤热通量出现负值。春、秋两季积雪过程中,能量以感热、潜热和土壤热通量三种形式分配;冬季积雪过程中能量以感热和土壤热通量分配为主,潜热通量较小,日均值在10 W·m~(-2)左右;而夏季积雪消融期潜热通量较大,日均值可达80 W·m~(-2)左右。各季节积雪的反复积累和消融过程对大气及土壤均以降温作用为主。秋季降雪后,气温和浅层土壤温度降低,当土壤温度降到冰点以下时,土壤提前进入冻结期;而春季降雪后,则可能使得正在发生融化的土壤又再次冻结。冬季晴天积雪过程中,在积雪积累期,积雪对土壤起增温作用,0~20 cm土壤温度日均值升高1~2℃,导致浅层冻结土壤融化,土壤含水量略增加,在消融期,积雪对土壤仍起降温作用;而冬季阴天积雪对土壤均为冷却作用。夏季积雪积累期较短,降雪对土壤同样起明显的降温作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号