首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   26篇
  国内免费   20篇
测绘学   1篇
大气科学   48篇
地球物理   4篇
地质学   8篇
海洋学   9篇
  2024年   3篇
  2023年   5篇
  2022年   15篇
  2021年   12篇
  2020年   11篇
  2019年   13篇
  2018年   8篇
  2017年   3篇
排序方式: 共有70条查询结果,搜索用时 31 毫秒
11.
地面强风可直接造成人员伤亡和经济损失,严重影响出行安全、工农业生产等社会秩序。强风的发生与天气系统和复杂下垫面的共同作用密切相关,在城市区域尤为明显。受数值模拟技术和计算资源的限制,对实际天气条件下大范围城区的强风现象进行建筑物分辨率的大规模数值模拟研究仍是一个挑战。本研究利用中尺度气象模式嵌套流体计算动力模式的超高分辨率局地气象预报系统,对强冷空气过程造成广州市区的一次强风事件进行数值模拟,深入探讨强风的精细结构和形成机制。结果表明,伴随着强冷空气入侵,广州市区的平均风速和风场高频扰动均明显增强,且在城市冠层顶尤为明显,呈现区域不均匀的三维结构,数值模拟与地面观测相一致。较大范围的强风速和阵风主要出现在建筑物较为低矮的老城区上空,并持续影响下游河道等开阔区域。在高层建筑密集的新城区,虽然整体风速明显减弱,但能在平行风向的街道狭管和下游区域形成局地强风。特别是,超高层建筑群引起显著的垂直环流,导致强风扰动向下传播,造成最大风速达8 m s?1的地面局地强风,阵风指数接近2。上游建筑群引起的风场扰动呈现大尺度湍流结构,能沿着平均气流传播影响数公里之远的下游地区。当风场扰动经过广州塔等单体超高层建筑时,可在其两侧绕流区再次加强,形成局地强风。局地强风和阵风还出现在垂直于风向排列的沿江高层建筑群的侧边,与建筑屏风的阻挡效应和缺口溢出有关。研究结果促进认识城市强风的时空特征和物理机制,有助于提升城市气象的精细化预报水平。  相似文献   
12.
2015年11月浙江省降水异常成因分析   总被引:1,自引:1,他引:0  
陈练  王阔  李进  李栋梁 《气象科学》2017,37(4):542-552
利用NCEP/NCAR大气环流资料、NOAA ERSST.V3b海温资料以及浙江省66个台站1971年以来的降水资料,分析了浙江省11月降水偏多对应的高低层大气环流异常特征以及与热带海温异常的联系,并在此基础上对2015年11月浙江省降水异常偏多的事实进行梳理和个例诊断。结果显示,2015年11月浙江省处于降水偏多的气候背景,同时北半球北极涛动正位相异常偏强、中高纬地区经向环流偏弱,西北太平洋副热带高压强度异常偏强、位置偏西是造成降水异常偏多的主要原因;统计分析表明巴尔喀什湖地区500 hPa高度场和西太平洋副热带高压强度与浙江省11月份降水具有显著相关;厄尔尼诺是导致浙江省11月降水偏多的重要外强迫因子之一,2015年11月Niño3.4指数达历史峰值,是造成浙江省同期降水异常偏多的主要原因。  相似文献   
13.
14.
李哲  尹春光  郑杰  刘超 《气象科技》2024,52(2):173-185
上海青浦CINRAD/SAD雷达和南汇WSR 88D雷达型号不同,并且采用不同的双偏振技术升级方案,实际业务运行中2部雷达存在一定的数据偏差。为了对雷达的探测性能进行定量评估,在共同探测区域遴选2022年7—9月及2023年6月共30个过程3933个时次数据,以稳定性降水与对流性降水分类并按强度分级进行对比,评估了反射率因子ZH,差分反射率ZDR,相关系数CC和差分传播相移ΦDP的水平分布特征及随方位变化趋势,雷达灵敏度随仰角变化趋势以及ZH和ZDR偏差的定量统计。结果表明:2部雷达ZH的观测结果接近,青浦CINRAD/SAD雷达的ZH,CC和ΦDP受地物及避雷针影响较大,随方位变化不稳定,青浦CINRAD/SAD雷达在低层的非气象回波滤除效果较南汇WSR 88D雷达差。2部雷达ZH和ZDR的偏差在ZH大于40 dBz的区域较大,ZH平均偏差为0.9 dB,ZDR为-0.14 dB。本文基于台风、冰雹、短时强降水和梅雨降水数据,定量化评估了上海2部S波段双偏振天气雷达数据之间的差异,为后续算法改进以及数据订正提供参考。  相似文献   
15.
李林江  朱建荣 《海洋学报》2021,43(10):10-22
本文应用三维数值模式ECOM-si,研究冬季不同北风风速对长江河口盐水入侵和青草沙水库取水的影响。数值实验结果表明,北风驱动苏北高盐水向南往长江口输运,在埃克曼输运作用下,长江河口形成北港进南港出水平环流,加剧北港盐水入侵。在枯季平均径流(11 900 m3/s)条件下,当北风风速超过10 m/s,北港口门水通量朝陆净输运,当风速超过11 m/s,北港盐水倒灌至南港。无风时,北港半月平均盐度仅为0.97,北港口门半月平均水位仅为0.13 m;当风速增加到14 m/s时,盐度和水位分别增长到27.4和0.42 m。北风减少了青草沙水库的取水天数。无风时青草沙水库30 d内可取水天数共有29.7 d;当风速高于10 m/s,30 d内可取水天数降为0 d。北风风速增强能够显著增加北港盐水入侵,不利于青草沙水库取水。  相似文献   
16.
为了研究空气污染影响人类健康和经济社会可持续发展这一重要环境问题,世界气象组织全球大气观测计划(WMO-GAW)和国际全球大气化学计划(IGAC)共同发起了空气质量监测、分析、预报国际研究计划(Monitoring,Analysis,and Prediction of Air Quality;即MAP-AQ),并于2019年5月27—29日在WMO总部日内瓦组织召开了MAP-AQ专家指导委员会会议。  相似文献   
17.
近年来人工智能和物联网等新兴技术在众多领域中取得了突破性进展,为大数据时代带来革命性的改变.与传统方法相比,人工智能和物联网技术因其在数据的获取、传输、分析和处理等方面具有显著的优势,在大气科学领域引起了广泛的关注.在全球极端天气事件、气象灾害频发的背景下,本文通过文献调研指出了运用人工智能与物联网相结合发展智慧气象的...  相似文献   
18.
斯里兰卡岛以东海域在西南季风期间常会出现一对低频涡旋偶极子(即斯里兰卡穹顶气旋涡和反气旋涡),对当地的海洋生态系统及气候有着重要影响。基于(1/12)°分辨率的混合坐标海洋模式(Hybrid Coordinate Oceanic Model,HYCOM)再分析资料以及多尺度子空间变换(MWT)和基于MWT的正则传输理论等方法,分析了它们的生成发展机制。结果发现这2个涡旋发展所需能量最终都来源于海表风应力做功,但具体可取3条完全不同的路径:①风应力直接驱动涡旋;②风应力驱动背景场的西南季风流,其后西南季风流发生正压不稳定以提供涡旋所需的涡动能;③西南季风流通过风应力做功获得的动能转换为有效位能,其后通过斜压不稳定给涡旋提供位能。涡旋最终衰亡的主要原因包括风应力对涡旋做功的减少、西南季风流正压不稳定的减弱、涡旋的能量频散以及低频涡向更高频扰动的正向能量级串。  相似文献   
19.
土壤冻融过程对气候变化非常敏感,如何准确监测土壤冻融过程具有重要的科学意义。利用2017年6月至2018年6月中国科学院若尔盖高原湿地生态系统研究站玛曲观测场地基微波辐射计观测数据、浅层土壤温度和近地面气温数据,通过构建归一化极化比值冻结因子、极化差值冻结因子、组合水平极化差值冻结因子和组合垂直极化差值冻结因子等不同土壤冻结因子,评估了黄河源区草原下垫面土壤冻融过程。结果表明:L波段微波辐射计监测土壤冻融状态的结果与近地面气温和浅层土壤温度表征的土壤冻融过程基本一致。当入射角为50°时,归一化极化比值冻结因子和极化差值冻结因子与实测数据的一致性分别达到83.6%和82.8%。每种冻结因子具有明显的季节性变化,四种冻结因子在春季时的准确度低于夏、秋、冬三个季节。归一化后的相对冻结因子的标准差在秋季最大,可达0.3;在冬季和夏季最小,值小于0.2。在土壤发生冻结和融化转换时,垂直极化和水平极化下的亮温同时下降,其差值较完全冻结或者完全融化时的亮温差大。研究结果可为微波遥感监测土壤冻融过程提供技术参考。  相似文献   
20.
利用国际耦合模式比较计划第5阶段(CMIP5)中的21个气候模式的RCP4.5和RCP8.5情景预估结果,分析了全球变暖1.5℃和2℃阈值时青藏高原气温年和季节的变化特征。结果表明,对应1.5℃和2℃全球变暖,青藏高原变暖幅度明显更大,就整体而言,在RCP4.5/RCP8.5情景下,高原区域平均的平均、最高、最低气温变暖分别为2.11℃/2.10℃和2.96℃/2.85℃、2.02℃/2.02℃和2.89℃/2.77℃、2.34℃/2.34℃和3.20℃/3.14℃,冬季平均气温的变暖幅度(2.19℃/2.31℃和3.13℃/3.05℃)较其他季节更大;从空间分布形势上看,年变暖呈西南高东北低的分布,而春、冬变暖呈南高北低的分布,夏、秋变暖则呈西高东低的分布。到达同一温升阈值时,RCP4.5与RCP8.5情景下高原气温的响应也存在区域差异。高原年与各季平均气温对全球变暖1.5℃与2℃的响应差异均>0.5℃,其中冬季最明显,区域平均差异可达0.94℃,局地差异超过1.1℃。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号