首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   3篇
  国内免费   1篇
测绘学   1篇
大气科学   2篇
地质学   20篇
自然地理   6篇
  2023年   3篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   6篇
  2011年   3篇
  2010年   2篇
排序方式: 共有29条查询结果,搜索用时 140 毫秒
11.
祁连山老虎沟12号冰川表面能量和物质平衡模拟   总被引:6,自引:4,他引:2  
采用HOCK的分布式能量物质平衡模型对老虎沟12号冰川消融期的物质平衡进行了模拟,时间步长为1 h,空间分辨率为30 m. 模型结果利用物质平衡观测数据和气象站观测数据验证,模型模拟时期为2012年6月1日-9月30日. 模型模拟结果表明,地形因子对太阳辐射影响相当显著;散射辐射在总辐射中的比例较大为39%,模拟期冰川表面物质平衡为-506 mm w.e.. 在模拟期整个冰川平均上净辐射占能量收入的84%,感热通量占有16%;消融耗热则是能量的主要支出占有62%,潜热通量占有能量支出的38%.  相似文献   
12.
祁连山老虎沟12号冰川近地层微气象特征分析   总被引:1,自引:0,他引:1  
利用2009年9月1日-2010年8月31日祁连山老虎沟12号冰川海拔4 550m气象观测资料,分析并讨论了气温、降水、比湿、气压、风速、风向、总辐射、感热和潜热通量的变化特征。结果表明,在冰川下垫面影响下,气温的逐时变化呈现出升温比降温要快,但季节变化则相反,气温变化的位相比风速要超前;降水主要集中在5~9月,占全年降水的68.1%;冬季平均风速最大,夏季最小,春季高于秋季,春、秋季冰川风的强度要大于谷风,夏季则相反,冬季冰川风占绝对主导地位,且冰川风对地气间的能量交换有重要影响;全年感热通量日平均值大部分都为正值,而潜热通量基本都为负值,在气温较高、风速较大的情况下二者均有明显的增加;夏季感热和潜热通量的绝对值都比冬季要大。  相似文献   
13.
祁连山西段冰川区与非冰川区气温梯度年内变化特征   总被引:1,自引:0,他引:1  
为研究冰川区与非冰川区不同下垫面对气温梯度的影响。本文利用祁连山老虎沟流域4 180 m, 4 550 m和5 040 m处的三个气象站及肃南、肃北、托勒、玉门、酒泉、瓜州、敦煌等七个国家气象站2011-2013年的日平均气温资料,分析了祁连山西段冰川区与非冰川区年内气温梯度特征,并结合相应时段的降水资料以及其他气象因素对其变化特征做了分析。结果表明:(1)在非冰川区,气温梯度随海拔上升而增大,且有明显的月际波动特征,年内梯度呈现先减后增的趋势,夏季最大,冬季最小,年气温梯度为0.50℃·(100m)-1;(2)在冰川区,气温梯度呈现先增后减的趋势,夏季最小,冬季最大,年气温梯度为0.61℃·(100m)-1,日内变化特征为白天气温梯度变化幅度大但值较小,夜间变化幅度小,稳定在0.83℃·(100m)-1左右,日内平均气温梯度为0.49℃·(100m)-1;(3)冰川区与非冰川区年内温度梯度与降水梯度呈相反的变化趋势,表明降水对气温梯度变化有一定的影响。(4)由于非冰川区与冰川区下垫面不同,气温梯度呈相反的年内变化趋势,在由非冰川区气温推算冰面气温时必须考虑温跃值影响,老虎沟12号冰川年平均温跃值为1.30℃。  相似文献   
14.
祁连山西段冰川积雪中大气粉尘沉积特征   总被引:5,自引:0,他引:5  
基于2012 年夏季野外考察、微粒粒度测试和扫描电镜(SEM-EDX) 微观形貌观测研究, 对位于我国青藏高原东北缘的祁连山西段典型极大陆型冰川区老虎沟12 号冰川、野牛沟十一冰川积雪中大气粉尘沉积进行了分析研究。两冰川区积雪中微粒的平均质量浓度分别是3461 μg/kg、2876 μg/kg, 年均沉积通量分别是207.6 μg/cm2、143.8 μg/cm2。将本研究区与其他区域冰川积雪中粉尘浓度对比研究表明, 冰川受周边粉尘源区影响较大。雪坑微粒浓度剖面和离子相关性分析表明, 祁连山西段冰川积雪中污化层富含亚洲粉尘的富Ca2+、Na+矿物;微粒体积-粒径分布众数介于3~22 μm, 两冰川区的粒径众数分别为12.6 μm和12 μm, 粒径分布均显示了单结构模式, 同时反映了祁连山冰川区与毗邻的天山地区雪冰中粉尘粒径分布模式的相似性和粒径众数的差异性。通过SEM-EDX对粉尘颗粒的微观结构研究发现, 颗粒绝大多数为形貌不规则的矿物粉尘颗粒, 和很少数量的飞灰颗粒等。同时, 对粉尘来源结合Sr-Nd同位素测定和气团后向轨迹分析进行验证, 认为位于研究区北边的巴丹吉林沙漠是祁连山12号冰川区粉尘最可能的源区。  相似文献   
15.
2008年10月和2009年10月在祁连山老虎沟12号冰川积累区采集了2个雪坑样品, 通过样品中δ18O、可溶性离子、不溶性微粒的变化特点划分了雪坑季节. 2008年雪坑季节变化信号明显, 而2009年雪坑不明显, 微粒浓度、Ca2+与Mg2+含量在春季较高. 离子平衡、pH值、电导率及同期气象记录观测资料均显示, 2009年雪坑受淋溶影响较大. 淋溶强烈时, 受融水造成的粉尘溶解及离子淋溶的影响, 雪坑中微粒与Ca2+、Mg2+变化趋势不甚一致; 与Ca2+相比, Mg2+变化能够较好表征微粒的变化; d>5 μm的微粒可能更易于溶解迁移. 通过分析室内雪冰样品在液态下的变化, 发现伴随静置过程微粒的质量浓度呈下降的趋势, 期间Ca2+、Mg2+却呈现增加的变化, 可能与碳酸盐矿物的溶解有关.  相似文献   
16.
为攻克冬奥会等顶级赛事高山滑雪项目赛道制作技术,在黑龙江省亚布力体育训练基地、张家口密苑云顶乐园和北京延庆国家高山滑雪中心开展了多次冰状雪赛道制作试验,发现-12℃晴空天气条件最适宜开展赛道制作,最优方案为-15~-10℃(气温)/6~9 bar(注水压力)/4~8 s(注水时长)。基于试验数据,建立了冰状雪赛道合格标准,以及国际上第一个冰状雪赛道制作的天气-注水定量模型,该模型可应用于大陆性气候条件下高山赛事并有潜力推广至其他冷干地区。此外,研究发现人造雪含水量和微观结构对赛道质量有显著影响,含水量越低、雪颗粒越小、雪形态越均一,赛道稳定性和硬度越大。研究成果弥补了国内有关冰雪体育保障技术的空白,可为我国承担大型冰雪赛事提供智力支撑。  相似文献   
17.
作为地球气候系统演变的“预示器”,格陵兰冰盖(Greenland ice sheet, GrIS)质量变化不仅是全球气候变化研究的重点领域,也是海平面变化研究的关键科学问题。结合多种大地测量技术及气候模式等回顾了GrIS近几十年质量变化,总结了不同手段的优缺点及其质量变化机制。基于卫星重力、测高等多种手段的研究结果表明,受不同手段自身特点的影响,计算的GrIS质量变化存在明显差异,导致对海平面变化的预测存在较大不确定性。GrIS质量的快速变化与多种驱动机制相关,包括地理环境导致的辐射反馈,海洋、大气热力过程及冰盖动力过程等影响。然而,不同机制之间的相互作用仍待进一步研究。针对目前手段和机制存在的不足,指出多源数据的融合应用、极地冰盖模式的进一步优化等可能是未来GrIS质量变化及其气候变化响应研究的重要方向。  相似文献   
18.
祁连山老虎沟12号冰川浅冰芯记录的气候环境信息   总被引:7,自引:3,他引:4  
2006年6月在祁连山西段大雪山的老虎沟12号冰川钻取了一支20.12m的浅冰芯,对冰芯中化学组成成分的浓度变化特征和来源分析进行了研究.结果表明,冰芯中δ18 O和可溶性离子含量变化均显示了明显的周期性变化,δ18 O与祁连山西段温度有很好的正相关关系.通过相关分析和HYS-PLIT后向轨迹分析表明,老虎沟12号冰川...  相似文献   
19.
祁连山老虎沟12号冰川积累区消融期能量平衡特征   总被引:13,自引:11,他引:2  
为研究冰川消融期积累区的能量平衡,利用2006年6月21日-7月31日祁连山老虎沟12号冰川海拔5040 m气象观测资料,分析了冰川的能量平衡各分量变化特征,估算了冰川表面的能量平衡组成.结果表明:冰川消融期,净辐射是冰川的主要热量来源(占82.1%),其次是感热通量(占17.9%);冰川消融耗热是主要的能量支出项(占...  相似文献   
20.
国家自然科学基金视角下地理科学融合发展路径探索   总被引:3,自引:0,他引:3  
随着整体科学的进步和国家社会的发展,地理科学已迈入跨学科交叉融合发展的新阶段。通过学科间和领域间的深度融合寻求新发展路径,完善知识体系,充分发挥服务国家社会之功能,是当前地理科学发展的当务之急。本文基于自然科学基金视角,分析了中国地理科学融合发展的现状与问题,认为其与国际前沿未充分接轨,研究的全球政治、经济、文化影响力有待加强,认为地理科学融合国家重大需求进行理论与技术创新的能力有待提升,认为学科内部体系要根据知识融合需求进一步优化。在此基础上,提出了资助政策引导下地理科学面向世界科技前沿的学科交叉融合、面向国家重大战略的多领域交叉融合和面向申请代码优化布局的分支学科交叉三大融合发展路径与相应政策工具。未来国家自然科学基金委员会将立足于保持学科发展的持续性和稳定性,通过政策创新来激励地理科学与其它学科、领域的交叉融合,以建设更具有活力与创新性的学术生态系统。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号