首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   10篇
  国内免费   15篇
大气科学   1篇
地质学   10篇
海洋学   48篇
自然地理   8篇
  2022年   2篇
  2020年   1篇
  2016年   3篇
  2015年   5篇
  2014年   1篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   7篇
  2008年   5篇
  2007年   10篇
  2006年   6篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1981年   1篇
排序方式: 共有67条查询结果,搜索用时 31 毫秒
11.
长江河口拦门沙河床淤积和泥沙再悬浮过程   总被引:23,自引:1,他引:22  
李九发  何青  张琛 《海洋与湖沼》2000,31(1):101-109
利用近20年来长江河口所观测的地形、水文、悬沙和河床沉积物资料,着重对1988、1989、1996和1997年最新观测资料进行计算分析。结果表明,长江河口航道拦门沙河段来水沙量大,潮流作用强,潮波变形明显,水流挟沙力强。该河段潮流速随时间和空间变化,又处在盐淡水交换地带,流域和海域来沙在此河率时淤时冲,悬沙与床沙交换频繁,表现在涨急、落急时可床淤积层泥沙再次起动悬浮,憩流时只河床,在一个潮周期中含  相似文献   
12.
长江口南北槽分流口动力地貌过程研究   总被引:1,自引:0,他引:1  
分汊口的地貌演化格局对于三角洲建造和下游河槽的稳定具有重要作用.作为长江河口的第三级分汊口(南、北槽分流口),形成历史较短,但又经历了长江口最大的水利工程(北槽深水航道工程)的影响,故该分流口的变化是近年来长江河口研究的核心内容之一.本文基于近50 a的地形、流域入海水沙和南北槽落潮分水分沙比等数据,探讨了南北槽分流口的动力地貌变化过程.结果表明:(1)在1998年前,长江口南北槽分流口经历了由不稳定—相对稳定—动态平衡的阶段,其中分流口沙洲洲头出现下挫—上提—下挫、主泓线则经历分流口南侧—北侧—南侧的周期变化,河槽断面由U型发展为W型.(2)长江大洪水是导致分流口地貌格局出现变化的动力因素.在洪水发生的间歇期,分流口地貌则处于由不稳定向相对稳定发展的调整阶段.(3)1998年修建沙洲洲头潜堤工程后,沙洲洲头出现上提—下挫—上提的微弱变化,但总体上沙洲头向北偏移,这导致进入北槽的分水分沙比有所减小.(4)自2002年以来,沙洲洲头因分流口的淤积而缓慢上提,潜堤北侧北槽上段淤积加重,潜堤南侧尤其紧贴潜堤部位侵蚀加剧,南槽分水分沙增大,分流口落潮冲刷槽进一步向南槽发展.  相似文献   
13.
长江河口有机质含量丰富,盐度变化较大,因此研究长江河口以细颗粒泥沙为主的多因子共同作用下的絮凝有助于了解最大浑浊带的形成机制.通过实验研究盐度和腐殖酸共同作用对长江口细颗粒泥沙浊度变化影响的过程,从浊度相对变化率、絮团粒径和电位变化三方面综合分析了其絮凝机理,并且对絮凝体进行了红外和电镜分析,探讨了絮凝体的微观结构.结果表明:(1)随着盐度增大细颗粒泥沙浊度相对变化率逐渐增大,粒径增大,而电位绝对值变小;(2)随着腐殖酸浓度增大细颗粒泥沙浊度相对变化率先略有升高后迅速降低,粒径增大,电位绝对值增大;(3)微观结构的分析表明腐殖酸是以腐殖酸盐的形式包覆在泥沙表面,同时也验证了河口中C-P-OM(C代表黏土,P代表阳离子,OM代表有机化合物)的泥沙絮凝模式.  相似文献   
14.
长江口涨潮与落潮流速和悬沙输运不对称性研究   总被引:1,自引:0,他引:1  
为了量化比较海表层环境及温跃层环境对南太平洋长鳍金枪鱼渔场分布的影响程度;本研究采用2010-2012年南太平洋长鳍金枪鱼延绳钓渔船实际生产统计数据;结合卫星遥感所获取的海表面温度(sea surface temperature;SST)和海表面高度(sea surface height;SSH)数据以及Argo浮标所获取的温跃层上、下界水温和深度数据;运用外包络法分别构建了基于海表层环境变量、温跃层上界环境变量以及温跃层下界环境变量的3种栖息地适应性指数(habitat suitability index;HSI)模型。模型验证结果显示;基于海表层环境变量的HSI模型;HSI>0.6时所占产量比重为70.04%;投钩数量比重为70.86%;HSI>0.8时所占产量比重为24.92%;投钩数量比重为25.79%;基于温跃层上界环境变量的HSI模型;HSI>0.6时所占产量比重为82.17%;投钩数量比重为80.95%;HSI>0.8时所占产量比重为33.24%;投钩数量比重为32.69%;基于温跃层下界环境变量的HSI模型;HSI>0.6时所占产量比重为81.01%;投钩数量比重为81.54%;HSI>0.8时所占产量比重为43.51%;投钩数量比重为43.73%。研究发现;基于温跃层上界和下界环境变量的两个HSI模型预报精度明显高于基于表层环境变量的HSI模型;且基于温跃层下界环境变量的HSI模型预报精度高于基于温跃层上界环境变量的HSI模型。研究结果表明;相较于海表层环境;温跃层环境;尤其是温跃层下界环境特征对南太平洋长鳍金枪鱼资源分布的影响更为显著。  相似文献   
15.
河口细颗粒泥沙有机絮凝的研究综述及机理评述   总被引:4,自引:0,他引:4  
河口海岸水域细颗粒泥沙的絮凝研究一直是人们广泛关注的课题,由于河口区水体成分较为复杂,加上水动力条件的影响,因此对絮凝的研究也是众说纷纭,本文针对河口区丰富的有机质,着重分析和综述了有机质对细颗粒泥沙粒径、表面电性质和稳定性的影响以及有机絮凝的热力学理论解释等研究成果,同时对泥沙颗粒有机絮凝的机理和有机―无机复合絮凝的模式进行了详细评述。在此基础上,结合国内有机絮凝研究现状,提出了今后的研究方向。  相似文献   
16.
钱塘江河口细颗粒泥沙絮凝沉降特性研究   总被引:3,自引:0,他引:3  
钱塘江口河口上游河流和海域来沙多为细颗粒泥沙,粘性细颗粒泥沙由于其特殊的表面电化学性质遇到强电解质海水而产生絮凝沉降,是形成河口淤积的原因之一。影响絮凝的因素很多,除了电解质,还有泥沙粒径的大小、盐度、含沙量、PH值、温度、有机质含量、矿物成分、水流速度及紊动情况等。本文通过粒度分析、静水沉降、动水沉降等各种实验手段分析钱塘江口泥沙的基本特性,找出最佳絮凝盐度以及泥沙不淤流速等值,初步探讨了细颗粒泥沙的絮凝机理,为治理钱塘江口提供科学依据。  相似文献   
17.
黄河三角洲飞雁滩HF孔沉积物的磁性特征及其环境意义   总被引:2,自引:0,他引:2  
对黄河三角洲飞雁滩HF孔岩芯磁性特征的研究表明,大多数沉积物的磁性特征由PSD和SD磁铁矿所主导,少数以SD和PSD磁铁矿所主导。按磁化率等磁参数的变化可将该孔划分为7个层位,参照前人研究成果,结合岩性分析以及沉积物粒度和磁性特征,推断HF孔所在飞雁滩地区大致经历了河流—海陆过渡—浅海—前三角洲—三角洲前缘的沉积过程。沉积物磁性参数与粒度之间具有良好的相关性,可将χARM、χARM/χ和χARM/S IRM视作细粒级组分含量的代用指标。  相似文献   
18.
长江河口浮泥形成机理及变化过程   总被引:15,自引:0,他引:15  
1976年以来,在长江河口盐水楔和最大浑浊带活动的河道进行了20余次现场观测,本文在现场观测资料基础上,确认长江河口浮泥由细颗粒泥沙组成,中值粒径在8-11.5um,小于2um的粘土占28.18%-36.39%,长江河口浮泥是悬沙在盐水混合环境中絮凝沉降于近义廾风暴潮再悬浮泥沙形成的高浓度浑水层,在成因类型上分为憩流浮泥,盐水楔浮泥和风暴潮浮泥,第1种在涨或落潮转流期低流时形成,规模大,厚度薄,第2种在盐水楔发育时形成,规模较小,厚度较大,第3种在大风后形成,规模大,厚度薄,第2种在盐水楔发育时形成,规模较小,厚度较大,第3种在大风后形成,规模大,范围广,若三者相遇,则浮泥厚度和范围最大,浮泥具有枯季,大小潮秽暴周期变化规律,长江河口河道多的浮泥层,浮泥层的变化与河口拦门沙的冲淤有良好的正相关。  相似文献   
19.
黄河下游挟沙能力自动调整机理的初步探讨   总被引:8,自引:0,他引:8  
前言 天然河流的河床形态是流经河床上的水流和泥沙与河床长期相互作用、不断自动调整后形成的。这种自动调整作用的最终结果在于使河流能够保持一定的平衡,这时河床断面、比降、糙率及物质组成正好具有使来自流域的泥沙能够在这样的容重和粘性的水流中输移下泄的流速。  相似文献   
20.
长江口外海滨悬沙分布及扩散特征   总被引:8,自引:1,他引:8  
长江口外海滨地区是陆海相互作用显著的区域,该区域复杂的水流等动力因素和地形条件决定了悬沙分布和扩散的特点。本文利用大量实测资料,对口外海滨地区悬沙的分布特征进行了综合分析,研究结果表明,平面分布不均,西高东低,南高北低,高低相差悬殊是长江口外水域悬沙平面分布的主要特点。枯季自西向东含沙量均匀减小,等值线分布较为稀疏。垂向涨落潮含沙量也表现出不同的分布特征,在口外的中西部水域垂向扩散系数较大,水体垂向混合程度均匀;垂向混合程度加强,水体含沙量也随之显著增加,这也造就了口外的南北两个高含沙区。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号