首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   13篇
测绘学   8篇
地球物理   41篇
地质学   3篇
自然地理   2篇
  2024年   1篇
  2023年   2篇
  2022年   9篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   4篇
  2010年   4篇
  2009年   3篇
  2008年   6篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
排序方式: 共有54条查询结果,搜索用时 31 毫秒
11.
湖泊水色遥感研究进展   总被引:31,自引:8,他引:23  
从卫星传感器、大气校正、光学特性测量、生物光学模型及水体辐射传输、水质参数反演方法等方面,系统分析了湖泊水色遥感的发展现状.湖泊水体物质组份的复杂性以及卫星传感器与实际需求的矛盾决定了湖泊水色遥感的难度.目前湖泊水色遥感在一些关键问题上仍没有实质性进步,离水色遥感监测的业务化尚有一段距离.令人欣慰的是,卫星传感器以及水色遥感反演算法的不断发展和进步,让我们看到了胜利的曙光.  相似文献   
12.
基于卫星遥感的太湖蓝藻水华时空分布规律认识   总被引:14,自引:6,他引:8  
由于大尺度水文模型和无资料区水文研究是当前国际水文研究的重点和难点,通过参数区域化方法来估计大尺度区域和无资料区的模型参数值成为了研究的热点之一将HBV模型应用于东江流域及其子流域,采用代理流域法和全局乎均法来估计该区域内无资料流域的模型参数研究表明:HBV模型能较好得用于东江流域径流模拟;交叉检验中,较小的序和ME值对应的参数,其转移效果不一定比较大的R^2和ME值对应的参数转移效果差;全局平均法中,面积权重平均值和泰森多边形插值后平均并不能明显改进子流域算术平均值估计无资料流域的模型参数的模拟结果;两者都能有效用于东江流域无资料流域的参数估计,且效果相差不大。  相似文献   
13.
湖泊水体的对流混合是最基本的物理过程,其能显著影响湖泊生态系统温室气体等循环,但浅水湖泊水体对流混合的研究鲜有报道.本研究基于太湖(面积2400 km2,平均水深1.9 m)中尺度通量网的原位、高频、连续和多点的观测数据,分析该大型浅水湖泊水体对流混合速率w*的时空特征.结果表明太湖水体w*的均值为2.49 mm/s,因太湖的风速、水温和辐射等物理参数无空间变化,w*也无明显的空间变化.但是研究表明w*呈现显著的昼夜变化和季节变化,且昼夜变化幅度强于季节变化.总体上夜间w*是白天的4倍多,冬季w*(均值1.79 mm/s)明显低于春季(均值2.42 mm/s)、夏季(均值2.91 mm/s)和秋季(均值2.82 mm/s).太湖w*主要受风速和能量收支影响,白天风速是主要驱动因子,夜晚能量收支是主要驱动因子.  相似文献   
14.
蓝藻的防控与治理是湖泊水环境、水生态管理的重要内容,实时获取蓝藻的空间分布信息对于降低蓝藻灾害风险具有重要意义.针对地面调查费时费力、卫星遥感监测粒度较粗且时效性不强等问题,本文提出了一种基于视频监控网络的湖泊蓝藻实时监测技术.基于环巢湖视频监控网络的33个功能摄像机,研究如何从视频图像中实时、准确提取蓝藻的分布信息.为克服不同摄像头的观测角度不一致、光照强度和背景条件不一致等诸多挑战,在视频图像蓝藻表征分析的基础上,通过多尺度深度网络进行图像粗粒度分类,区分蓝藻与浑浊、阴影水体;基于随机森林进行蓝藻精细化识别,克服蓝藻的强异质性.最后以渔政站沿岸水域的日均蓝藻覆盖率和月均蓝藻覆盖率为统计单位,开展了巢湖沿岸蓝藻的动态监测.研究成果可为科学制定蓝藻治理方案提供技术支撑.  相似文献   
15.
长江中下游大型湖泊水体固有光学特性:Ⅰ.吸收   总被引:1,自引:0,他引:1  
吸收系数是水体固有光学特性的重要组成部分,也是构建水色参数高精度遥感模型的基础,具有重要的研究意义.本文针对长江中下游三大淡水湖——鄱阳湖(2010 10、2011 08)、太湖(2008 10、2011 08)和巢湖(2009 10)进行5次野外实验,以International Ocean Colour Coordinating Group(IOCCG)2000年报告"Remote Sensing of Ocean Colour in Coastal,and Other Optically-Complex,Waters"为基础,对水体不同光学主导类型进行分类;并根据ad(非色素颗粒物吸收)、aph(浮游植物色素吸收)、ag(有色可溶性有机物吸收)等不同主导类型光谱曲线特征差异,引入ad-g(主导类型adagad-ag的合并类型)和aph-related(主导类型ad-aphad-aph-ag的合并类型)类型,对主导类型进行归纳合并.结果显示:秋季,鄱阳湖、太湖、巢湖的主导类型较为单一,分别为adad-agad-aph-ag;夏季,鄱阳湖和太湖同为两种类型共同主导,分别为adad-ag,ad-aph-agad-aph.总体来说,鄱阳湖夏、秋季和太湖秋季主导类型都属于ad-g类型,而太湖夏季和巢湖秋季则属于aph-related类型.另外,分别针对Gons和Gitelson叶绿素a模型假设条件进行验证,发现不同湖泊水体及不同主导类型下其适用性程度不一致.  相似文献   
16.
湖泊水质遥感研究进展   总被引:5,自引:0,他引:5       下载免费PDF全文
详述了湖泊遥感水质最新发展动态,如遥感水质模型的数学方法、与水质指标最敏感的波段以及TM、SPOT、MODIS、MERIS、AVHRR、CASI等传感器的适用情况,并分析了可能导致湖泊水质遥感模型误差的原因和解决办法。湖泊各项水质组分与光谱之间相互影响可认为是一种非常复杂的非线性关系,最适合用神经网络这样的黑箱模型来模拟。应当研究和选取敏感波段,用高光谱逐段分析与各种水质指标相关最密切的波段。湖泊水质遥感最终走向实用化必将其与水生态问题结合起来,作为一种监测手段,在水中藻类的时空分布、流域营养物质输送模型和湖泊水域水质模型等问题中得到广泛应用。我国学者使用超光谱数据源获得更为精确的监测成果还比较少,由于我国卫星可以用来进行水质遥感的波段比较宽,应当在新一代的资源环境卫星上加入更适合水质遥感的波段。  相似文献   
17.
吉林查干湖水体叶绿素a含量高光谱模型研究   总被引:4,自引:1,他引:4       下载免费PDF全文
叶绿素a含量能够在一定程度上反映水质状况,高光谱遥感可有效反演叶绿素a含量.该研究通过分析水体叶绿素a浓度与其高光谱反射特征之间的相关关系,采用单波段相关分析、波段比值、微分光谱和神经网络模型等多种算法建立了叶绿素a高光谱定量模型.结果表明:叶绿素a与单波段光谱在蓝、绿波段相关系数较低,而在红光与近红外波段有明显提高,微分光谱也表现出同样的趋势;反射率比值算法模拟效果好于线性回归法;神经元网络模型可以大大提高实测光谱数据的反演能力,确定性系数高达0.95.这为今后利用星载高光谱传感器在查干湖进行叶绿素a浓度大面积遥感反演提供了研究基础.  相似文献   
18.
利用MODIS影像提取太湖蓝藻水华的尺度差异性分析   总被引:4,自引:2,他引:2  
有效地提取蓝藻水华信息对分析蓝藻动态分布有重要意义,然而低空间分辨率数据提取的蓝藻水华会产生尺度误差.本文以太湖为研究区,利用2005年10月17日和2010年12月3日两景MODIS(250和500m)数据,采用浮游藻类指数(FAI)法提取太湖蓝藻水华面积;通过将FAI50均值化为FAImean(500 m),然后与...  相似文献   
19.
藻源性湖泛发生过程CDOM变化对水色的影响   总被引:1,自引:0,他引:1  
利用Y-型沉积物再悬浮发生装置模拟湖泛发生过程,分析其中有色可溶性有机物(CDOM)的变化特征及其对水色的影响.结果表明,藻类死亡过程消耗大量的氧气,水中溶解氧在短时间内消失殆尽,形成厌氧环境;并同时分解产生大量CDOM,使得水中CDOM显著增多.前期阶段,CDOM浓度随时间一直升高,第6 d时CDOM浓度达到峰值,CDOM在443 nm处的吸收系数ag(443)为4.48 m-1.水体黑度值(FeS浓度)呈先增大后减小的趋势,最大值0.35mmol/L同样出现在第6 d,整个过程中,CDOM浓度和黑度值变化趋势一致,ag(443)与水体黑度呈显著正相关.利用Hydrolight和CIE颜色匹配函数模拟不同梯度的CDOM对水色的影响,发现随ag(443)增大,水体颜色也逐渐由绿色转为棕色,整体向长波方向移动,水色逐渐变暗.因此,可以认为CDOM浓度变化是引起湖泛水体发黑的重要原因之一,可作为定量监测湖泛强度的指示性参数.  相似文献   
20.
以2008年10月太湖实测数据为基础,用改进的指数函数和线性法拟合非色素颗粒物吸收和浮游植物色素吸收,根据二者的加和关系,建立总悬浮颗粒物吸收分解模型,依据参量的不同,分别构建了两个分解模型(Mod-4和Mod-5),两者都可以较好的分解出太湖水体浮游植物色素吸收和非色素颗粒物吸收,但Mod-5的拟合精度稍高于Mod-4.研究结果对于进一步探索和建立太湖区域生物光学模型,精确反演水质参数具有一定意义.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号