首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   4篇
  国内免费   7篇
大气科学   14篇
自然地理   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   4篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
11.
利用辽宁和吉林省24座测风塔风速观测资料,应用线性回归方法对高分辨率中尺度模式近地层风速预报产品进行订正。首先通过4组不同的订正实验分析训练样本长度、样本滚动方式等对订正效果的影响,确定单点订正最佳方案,并综合线性方法在东北地区不同下垫面条件下的适用性;然后应用24座测风塔已确定的单点订正关系,尝试区域风速的平面订正,并基于剩余23座测风塔资料对全场订正效果进行评估。结果表明:训练样本的长度对订正效果影响较明显,在东北地区训练样本长度取20 d效果最佳;当训练样本长度取最优天数时,滚动系数的订正效果与固定系数的订正效果基本一致;各种下垫面通过线性订正均能取得较明显提高,其中丘陵地区效果最明显,通过订正均方根误差整体降低1.61 m·s-1,平原地区为0.95 m·s-1,沿海地区为0.91 m·s-1;平面风速订正实验显示,订正关系平面外推可取得明显的订正效果,全场平均绝对误差降低0.20 m·s-1,该方法可为订正资料匮乏区域的预报提供参考。  相似文献   
12.
利用雷达回波三维拼图资料识别雷暴大风统计研究   总被引:8,自引:0,他引:8  
应用雷达回波三维组网拼图数据、加密自动站和地面灾害大风资料,对2008—2012年京津冀地区20次区域性雷暴大风天气过程进行了统计。检验了基于模糊逻辑建立的利用回波强度识别大风的算法,分析了大风出现的位置。该大风识别算法确定了雷暴大风的6个雷达识别指标及其对应的权重系数和不同季节的隶属函数。检验分析块状回波、带状回波和片状回波3类大风过程的识别效果,结果表明:块状回波类大风是由孤立的强单体风暴引发的,风暴单体具有回波强、回波顶高、垂直积分液态水含量大和移动快等特点,雷暴大风多出现在风暴单体附近且二者移动路径一致;带状回波的长度远大于宽度,主要包含飑线和弓状回波,大风影响范围广且多位于带状回波的前沿一带;片状回波多指大面积层云回波中镶嵌着强回波单体块的混合回波,对应出现的雷暴大风多位于风暴单体的周边区域。3类回波识别到的可能出现大风区域与实测大风范围基本吻合,块状、带状和片状3种类型的雷暴大风命中率分别为96.2%、68.6%和45.3%,漏报率分别为3.8%、31.4%和54.7%。由于垂直积分液态水含量偏低和回波强度弱,片状雷暴大风识别漏报相对较多;空报原因除了与测站分布稀疏有很大关系外,也与识别算法本身有关。识别检验证明雷暴大风综合识别方法是合理可靠、切实可行的,可以为雷暴大风的短时临近预警业务和系统开发提供技术支撑,这一工作也为进一步预警大风出现的位置提供了基础。  相似文献   
13.
14.
利用地面观测资料、探空资料、NCEP再分析资料、多普勒雷达资料及WRF输出资料,研究了2014年6月20—21日发生在江南地区的一次持续性暴雨过程中中尺度对流系统(mesoscale convective system,MCS)的演变过程、结构特征及模态转变机理。此次暴雨发生在500 h Pa东移发展的短波槽前、850 h Pa切变线与低空暖湿急流之间的不稳定区。MCS演变过程中组织模态发生转变,对流东移发展形成拖尾型(tailing stratiform,TS) MCS,后逐渐转变为平行型(parallel stratiform,PS) MCS。环境风场上,TS型MCS表现为垂直对流线的相对入流,弓状回波北侧有气旋生成; PS型MCS低层表现为垂直对流线的相对入流,中高层表现为平行向相对入流。TS型MCS中,强对流区位于正扰动气压带,形成垂直作用于对流线的气压梯度力,导致相对入流垂直对流线;而在平行对流线方向上,扰动气压变化小,平行相对气流弱,整体呈现为较强的垂直向相对气流; PS型MCS中,气压扰动整体表现为西南正气压扰动与东北负气压扰动的分布特征,在西南-东北向气压梯度力作用下,形成平行对流线向后的相对入流,导致MCS模态的转变。  相似文献   
15.
利用1989~2018年ERA5地面太阳辐射资料,分析了不同季节主要大气环流特征指数与中国地面太阳辐射异常的关系。结果表明:(1)在春季,东亚槽位置对中国中东部大面积的地面太阳辐射异常有一致性的影响,其位置偏东时,地面太阳辐射异常显著偏少。冬季风强度和ENSO(El Ni?o–Southern Oscillation)分别对长江流域南北、中国南方东部和西部有反位相的影响。(2)夏季的影响因子比较复杂,NAO(North Atlantic Oscillation)和夏季风是两个较主要的影响因子,NAO对中国北方较多地区的地面太阳辐射异常的影响较为显著,而夏季风主要与江淮地区的地面太阳辐射异常相关联。当NAO指数偏大(小)时,北方大部分地区地面太阳辐射异常偏少(多)。当夏季风偏强(弱)时,江淮流域的地面太阳辐射异常显著偏少(多)。(3)在秋季,地面太阳辐射异常主要受到东亚槽位置、冬季风和NAO的影响,冬季风和东亚槽主要影响北方地区,当东亚槽偏西或冬季风偏强时,中国北方除东北地区外的大部分地区地面太阳辐射偏多。NAO主要与中国西部的地面太阳辐射异常关联,当NAO指数偏大时,西部地区北方地面太阳辐射异常偏少而南方大部分地区偏多。(4)在冬季,ENSO和冬季风是较重要的影响因子,但其显著影响区域并不对称。在ENSO负位相或冬季风较强时,中国北方大部分地区的地面太阳辐射异常显著偏多,而ENSO正位相或冬季风较弱最有利于中国南方地面太阳辐射异常偏少,但显著影响范围较小。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号