首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   3篇
  国内免费   4篇
地球物理   1篇
地质学   11篇
海洋学   2篇
自然地理   1篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2014年   2篇
  2012年   1篇
  2010年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1990年   1篇
排序方式: 共有15条查询结果,搜索用时 0 毫秒
11.
长江及鄱阳湖水系上游水库群运用后鄱阳湖枯季水文节律出现新的变化,为应对新的枯水情势,鄱阳湖水利枢纽作为一个选项被提出,如何确定其适宜的调控水位才能维持鄱阳湖湿地生态系统健康是其中的重点与难点.本文选择鹤类、小天鹅、鸿雁等食植物块茎水鸟作为鄱阳湖湿地生态系统的指示物种,基于EFDC水动力学模型和生境适宜度曲线构建了鄱阳湖越冬水鸟生境数值模拟模型;从食物资源与取食可及性两个方面,分苦草(Vallisneria natans)生长期和水鸟越冬期两个时段,以水深作为关键生境因子,对近10年鄱阳湖苦草及水鸟取食潜在生境面积变化进行了连续模拟;揭示了鄱阳湖苦草及水鸟取食潜在生境面积随水位的变化规律并构建了定量响应函数:苦草潜在生境面积随水位呈单峰型变化,在星子站水位为14.8 m时达到最大,约为1703 km2;越冬水鸟取食潜在生境面积随水位呈三段式变化,最大和最小面积分别约为564和476 km2,相应星子站水位分别为11.73和9.56 m.在此基础上,针对拟建的鄱阳湖水利枢纽工程,基于不同调度分期内生境保护目标的差异确定了符合天然水位波动特征的生态水位动态调控方案:下闸蓄水期内水位宜控制在16 m以下,后续根据越冬水鸟迁入情况逐步下降以增加取食生境面积,在12月次年1月的越冬水鸟数量峰值期水位宜控制在12.5 m以下,后续根据来水情况逐步过渡至江湖连通期的自然状态.成果从保护越冬水鸟食物资源与取食可及性两个方面提出了鄱阳湖水利枢纽生态水位的动态调控阈值,为江湖新水沙条件下鄱阳湖湿地生态系统保育提供了量化依据.  相似文献   
12.
文章在介绍河草坑铀矿田成矿地质背景的基础上,结合近些年开展的铀资源调查评价工作,对控矿因素进行了分析,并认为区内铀矿化主要受断裂构造、岩体、火山作用和蚀变带控制,区内铀矿化是构造-岩浆活动和热液蚀变共同作用的产物;提出了矿田南东部的龙骨千—仙坑地段、会昌红盆东缘深部和火山口及近外围铀成矿地质条件有利,找矿潜力大。  相似文献   
13.
苦草是鄱阳湖越冬水鸟的重要食物资源,为量化水位变化对鄱阳湖苦草生境的影响,基于环境流体动力学模型(EFDC)和生境适宜度曲线,构建了鄱阳湖苦草生境数值模拟模型;对三峡水库175 m试验性蓄水后鄱阳湖苦草潜在生境面积变化进行了连续模拟,建立了苦草潜在适宜生境和水深≤4 m水域面积变化与星子站水位的定量响应函数;并据此分析了三峡水库运用及拟建鄱阳湖水利枢纽对苦草潜在生境面积的影响。星子站水位15 m左右时苦草潜在生境面积最大,潜在适宜生境和水深≤4 m水域面积分别为1 703 km2和2 336 km2。三峡水库运用可有效保障鄱阳湖苦草潜在生境面积,但其扰动幅度也明显减小,潜在适宜生境和水深≤4 m水域面积序列标准差在三峡运用后减幅分别达到27%和47%。拟建鄱阳湖水利枢纽调控水位在其下闸蓄水期和长江上游水库蓄水调节期内宜分别控制在16 m以下和13.5 m以上,可保障潜在适宜生境及水深≤4 m水域面积与最大值相比减幅分别控制在20%和10%以内。成果明晰了水位变化对鄱阳湖苦草潜在生境面积的定量影响规律,为江湖新水沙条件下鄱阳湖生态系统保育提供了量化依据。  相似文献   
14.
黄沙铀矿区主要矿床受EW向黄沙断陷带控制。野外断层调查和ESR测年表明,控制断陷带的黄沙和上竹坑断层的断层泥ESR年龄分别为21.28±2.0Ma和22.42±2.2Ma,断层错移活动主要发生于喜马拉雅运动第二幕,黄沙断陷带是新构造期形成的矿后断陷带,它们没有控制铀矿床的形成过程,但由于在不断隆升剥露的新构造背景下,断陷带不断下陷而受到的侵蚀剥露程度较低,故其中矿体可以得到较好的保存。  相似文献   
15.
OpenMP在水动力数学模型并行计算中的应用   总被引:1,自引:0,他引:1  
采用PGI Fortran7.1-2(Portland Group)的OpenMP技术对二维水动力数学模型进行了并行优化试验。并行后,数学模型运行时间明显减少,在对同一算例的水流计算模拟中,串行和并行所需运行时间分别为5 336.781 s和3 454.296 s,平均加速比为1.56,平均并行计算节省时间36%,明显提高了水动力学数学模型的运算速度。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号