首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   7篇
  国内免费   1篇
地球物理   1篇
地质学   25篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   1篇
  2016年   1篇
  2012年   1篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有26条查询结果,搜索用时 0 毫秒
11.
对土层的回弹变形效应进行研究有助于科学实施地下水回灌、管理地下水资源及预测地面沉降。文章通过大量室内 压缩回弹试验,研究了土层回弹影响因素及回弹变形特性。试验结果表明:土层的最终回弹量受土样性质、最大固结压 力、固结时间以及卸荷比等因素影响;相同固结回弹条件下,土层黏粒含量越高,回弹量越大;对于同一种土,固结时间 越短,卸荷压力越大,回弹量越大;当卸荷比小于0.5时,固结压力对土层回弹量影响不明显,随着卸荷比的增大,同一种 土样所受固结压力越大,土样回弹率也越大,而当卸荷比大于0.9时,回弹率迅速增大。当土层类型及固结压力确定时,土 层最大回弹率和固结压力大致呈线性关系,可用于土层最大回弹率的预测。  相似文献   
12.
对砂土压缩过程中微观结构的提取,有利于认识其在压缩变形和破坏中的微观机制。为实现对砂土压缩固结过程中微观结构的固定、提取和量化,本文设计了一种砂土压缩过程中微观结构提取技术,其主要由环氧树脂胶注入装置和改进的固结仪砂样采集盒两部分组成。在砂土压缩固结试验中,采用步进电机推动注射器中蓝色环氧树脂胶,通过预设的硅胶软管,从透水石底部进入压缩中的砂样。待环氧树脂胶固结后,制作薄片,并用光学显微镜拍摄得到其微观结构图像。应用该技术,能实现砂土在压缩过程中微观结构的固定和提取。本文对3种不同粒径和级配的石英砂进行压缩和固化试验,以介绍该提取技术。在获取其微观图像后,进一步采用PCAS软件对微观结构进行定量分析。  相似文献   
13.
土的含水率AHFO法测量中分段函数模型建立   总被引:2,自引:2,他引:0       下载免费PDF全文
主动加热光纤法(Actively Heated Fiber Optic method,简称AHFO)实现了土的含水率大面积连续性测量,但该方法中采用的数学模型还不完善。通过试验测试了AHFO法中采用的几种常用数学模型,在此基础上提出了分段函数模型,并通过试验对分段函数模型的计算结果进行了论证。研究结果表明:指数函数模型获得的土的含水率结果误差较大;幂函数和对数函数模型获得的结果误差较小但整体值偏大;线性模型获得的结果误差最小,但在含水率较小时,测值偏小;分段函数模型对土的整个含水率变化范围内的含水率测定都具有很高的精度,绝对误差平均值达到了1.16%,可以满足土的含水率测试要求。分段函数模型的提出,对提高土的含水率AHFO法测定精度和促进方法的推广具有重要意义。  相似文献   
14.
生物炭修复重金属污染土研究进展   总被引:4,自引:0,他引:4  
随着城市化进程的加快及工业生产的迅速发展,土壤重金属污染日益加剧,对生态环境造成严重的危害。生物炭是缺氧或限氧条件下加热生物质制得的高度芳香化富含碳的固态物质,其在重金属污染土修复方面具有显著效果,受到广泛关注。基于近些年来国内外围绕生物炭修复重金属污染土所取得的研究成果,分别从生物炭的制备及性质、修复效果及其影响因素、修复机理等方面总结了该领域的研究现状及进展,取得如下主要认识:(1)生物炭具有价格低廉,修复效率高,改良土壤、环境友好等优势;(2)生物炭的理化性质主要受原材料和热解温度的影响,采用活化、磁化、氧化和消化等方法能改善生物炭的性质,提高修复效率;(3)生物炭对土壤中重金属迁移性和生物有效性的影响包括两个方面:固定重金属减少生物有效性或者迁移重金属增加生物有效性,后者可通过改性方法来降低重金属的迁移性和生物有效性;(4)生物炭对土体的固化效果一般,但可与其他固化材料共同使用,以改善土体的力学性质;(5)生物炭修复机理固定重金属的效果为:沉淀作用>络合作用>静电作用,离子交换>物理吸附。最后,针对该领域的研究现状,提出了未来的研究重点和方向,主要包括:建立划分生物炭的统一标准;探讨生物炭对多种重金属共同污染的修复效率;阐明生物炭吸附重金属的机理及其贡献率;扩大研究尺度;开展基于生物炭的固化试验及力学性质研究。  相似文献   
15.
在地面沉降过程中含水砂层的蠕变量不可忽视。本文以石英砂为试验材料,研究颗粒粒径、级配及形状对砂土蠕变特性的影响,并从细观角度定性和定量分析其蠕变机制,建立与宏观变形的联系。结果表明:砂土的蠕变过程分为稳定蠕变、减速蠕变和衰减蠕变3个阶段,砂土的粒径、级配及颗粒形状对蠕变特性产生影响:粒径越大,级配越好,颗粒形状越复杂,则任意时刻的蠕变速率越大,最终蠕变应变也越大。砂土细观参数可较好地反映其宏观蠕变特性,砂土的最终蠕变应变越大时,颗粒破碎程度越高,颗粒最终平均形状系数越大,孔隙率变化越大,最终面积概率分布指数也越大。在此基础上,引入砂土蠕变潜力评价指数(Icp),提出了利用砂土颗粒与孔隙特征评价地面沉降中不同砂土层蠕变潜力的方法。  相似文献   
16.
纤维加筋土中筋/土界面相互作用的微观研究   总被引:7,自引:0,他引:7  
纤维与土体界面之间的相互作用对纤维加筋效果有着重要的影响,了解接触面之间力的产生和传递过程对合理有效地利用纤维改良土体的工程性质有着重要的意义.为了研究聚丙烯纤维在不同的土介质中筋/土界面间的微观力学作用机理,运用扫描电子显微镜(SEM)分别分析了纤维在素土、水泥土和石灰土中的表面形态学特征及接触面之间力的产生和传递过...  相似文献   
17.
温度对FDR测量土壤体积含水量的影响   总被引:1,自引:0,他引:1  
为研究温度对FDR测量土壤体积含水量的影响,采用基于FDR技术的两种土壤水分传感器TDR-3和PR2,在环境温度范围为5~60℃条件下,对南京地区的粘性土土样进行了土壤体积含水量测试分析.结果表明:基于FDR技术的土壤水分传感器测量土壤水分时存在明显的温度效应,两种传感器所测的体积含水量与温度之间均呈线性递增关系,TDR-3的温度修正系数范围为0.2%~0.3%(v/v)·℃-1,PR2的温度修正系数范围为0.1%~0.2%(v/v)·℃-1.研究成果对于提高FDR测量结果的可靠性具有重要意义.  相似文献   
18.
下蜀土-膨润土混合土作为一种可选的衬垫材料,其膨胀性对城市垃圾卫生填埋场的安全性有重要意义。本文按不同的初始含水量(10%~20%)和膨润土掺量(5%~15%)共配制了9组混合土试样,并在不同的温度(30~50℃)条件下开展一系列无荷膨胀试验。试验结果表明:初始含水量是影响下蜀土-膨润土混合土膨胀的重要因素,初始含水量越高,试样膨胀性越小;混合土中膨润土掺量越高,膨胀性越大;温度对下蜀土-膨润土混合土的膨胀性也有重要影响,膨胀性随温度的升高增加,尤其对于膨润土掺量较高的试样,膨胀性的温度效应更明显。  相似文献   
19.
我国具有十分发达的水系,防洪减灾形势依旧严峻,需要不断提高堤防安全监控水平。堤防渗流场是影响堤防安全的关键因素,因此开展渗流场特征识别是保障堤防安全的重要前提。为弥补常规渗流场监测技术的不足,本文基于主动加热光纤热响应测试(Actively Heated Fiber Optics Based Thermal Response Test,ATRT),以“长江第一崩”扬中指南村崩岸场地为例,开展了单孔热响应测试研究,初步探索了堤防渗流场精细化评价方法。结果表明:(1)ATRT得到的高时空分辨率(时间采样间隔30 s,空间采样间隔0.41 m)光缆温度响应数据,可以用于识别不同地层中的地下水流速差异;(2)研究场地内埋深较浅的粉细砂层和埋深较深的砾砂层中的地下水渗流具有不同的演变规律;(3)指南村崩岸场地内地下水渗流场与地表水具有一定的联系,地下水流速整体表现出“近岸大,离岸小”的特点,这是指南村崩岸灾害的潜在诱因之一。研究结果初步验证了ATRT在评价堤防渗流场特征的可行性。该方法基于单个钻孔即可获得高时空分辨率的地下水渗流场分布特征,在堤防渗流场评价中具有较强的应用潜力。  相似文献   
20.
由城市化进程改变的城市空间热环境对城区土体湿度产生了重要影响。为了了解城区与郊区土体湿度的差异,以南京市为例,分别在城区、郊区建立了土体湿度监测站,分析2009年6月1日至2010年6月7日南京城区、郊区地下1 m范围内裸土、草地及混凝土覆盖环境下土体湿度的时空演化特征。研究结果表明,南京城区土体湿度总体上小于郊区,存在显著的城市土体"干岛效应",年平均干岛强度为-7.4%。在时间尺度上,1月的干岛强度最小,为-2.1%;7月最大,达到-20.5%。在空间尺度上,郊区土体湿度随深度增加而增大,城区土体则无明显规律。在不同地面覆盖环境下,城区、郊区土体湿度变化规律不同:城区裸土环境下土体湿度日变化明显,而草地及混凝土下的土体湿度日变化相对较小,3种地面覆盖环境的年均土体湿度变化规律为草地(19.0%)<混凝土(26.4%)<裸土(29.5%);郊区3种地面覆盖环境下土体湿度日变化区间及变化频率均比城区大,且年均土体湿度为混凝土(27.4%)<草地(34.7%)<裸土(36.2%)。最后,分析了造成城区、郊区土体湿度差异的原因。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号