首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5830篇
  免费   572篇
  国内免费   160篇
测绘学   247篇
大气科学   614篇
地球物理   2106篇
地质学   2382篇
海洋学   313篇
天文学   445篇
综合类   187篇
自然地理   268篇
  2023年   4篇
  2022年   11篇
  2021年   24篇
  2020年   17篇
  2019年   28篇
  2018年   453篇
  2017年   395篇
  2016年   277篇
  2015年   163篇
  2014年   141篇
  2013年   147篇
  2012年   668篇
  2011年   461篇
  2010年   138篇
  2009年   169篇
  2008年   152篇
  2007年   143篇
  2006年   159篇
  2005年   850篇
  2004年   895篇
  2003年   666篇
  2002年   187篇
  2001年   77篇
  2000年   55篇
  1999年   22篇
  1998年   14篇
  1997年   27篇
  1996年   16篇
  1995年   6篇
  1994年   7篇
  1992年   7篇
  1991年   13篇
  1990年   15篇
  1989年   9篇
  1988年   6篇
  1987年   7篇
  1986年   6篇
  1985年   7篇
  1984年   12篇
  1983年   6篇
  1982年   5篇
  1981年   6篇
  1980年   4篇
  1976年   8篇
  1975年   5篇
  1973年   4篇
  1970年   4篇
  1969年   4篇
  1965年   4篇
  1951年   3篇
排序方式: 共有6562条查询结果,搜索用时 437 毫秒
101.
102.
Estuarine rearing has been shown to enhance within watershed biocomplexity and support growth and survival for juvenile salmon (Oncorhynchus sp.). However, less is known about how growth varies across different types of wetland habitats and what explains this variability in growth. We focused on the estuarine habitat use of Columbia River Chinook salmon (Oncorhynchus tshawytscha), which are listed under the Endangered Species Act. We employed a generalized linear model (GLM) to test three hypotheses: (1) juvenile Chinook growth was best explained by temporal factors, (2) habitat, or (3) demographic characteristics, such as stock of origin. This study examined estuarine growth rate, incorporating otolith microstructure, individual assignment to stock of origin, GIS habitat mapping, and diet composition along ~130 km of the upper Columbia River estuary. Juvenile Chinook grew on average 0.23 mm/day in the freshwater tidal estuary. When compared to other studies in the basin our growth estimates from the freshwater tidal estuary were similar to estimates in the brackish estuary, but ~4 times slower than those in the plume and upstream reservoirs. However, previous survival studies elucidated a possible tradeoff between growth and survival in the Columbia River basin. Our GLM analysis found that variation in growth was best explained by habitat and an interaction between fork length and month of capture. Juvenile Chinook salmon captured in backwater channel habitats and later in the summer (mid-summer and late summer/fall subyearlings) grew faster than salmon from other habitats and time periods. These findings present a unique example of the complexity of understanding the influences of the many processes that generate variation in growth rate for juvenile anadromous fish inhabiting estuaries.  相似文献   
103.
Warning systems are increasingly applied to reduce damage caused by different magnitudes of rockslides and rockfalls. In an integrated risk-management approach, the optimal risk mitigation strategy is identified by comparing the achieved effectiveness and cost; estimating the reliability of the warning system is the basis for such considerations. Here, we calculate the reliability and effectiveness of the warning system installed in Preonzo prior to a major rockfall in May 2012. “Reliability” is defined as the ability of the warning system to forecast the hazard event and to prevent damage. To be cost-effective, the warning system should forecast an event with a limited number of false alarms to avoid unnecessary costs for intervention measures. The analysis shows that to be reliable, warning systems should be designed as fail-safe constructions. They should incorporate components with low failure probabilities, high redundancy, have low warning thresholds, and additional control systems. In addition, the experts operating the warning system should have limited risk tolerance. In an additional hypothetical probabilistic analysis, we investigate the effect of the risk attitude of the decision makers and of the number of sensors on the probability of detecting the event and initiating a timely evacuation, as well as on the related intervention cost. The analysis demonstrates that quantitative assessments can support the identification of optimal warning system designs and decision criteria.  相似文献   
104.
In this paper, the stability of an ancient landslide during the first impounding of a nearby reservoir is investigated through the analyses of the shear strength reduction behavior of slip zone soil. In view of the experimental observations, an empirical strain-dependent soil model is established and is then incorporated in finite element analyses. The numerical analysis results show that the failing sections progressively develop due to the soil strength declines from peak toward residual, and the shear zone propagates within the front slope. It is demonstrated in the numerical results that the toe weighting measure has a significant effect on restraining the shear displacements of the soils and preventing the progressive failure of the landslide. The field observations further confirmed the stability condition of the reinforced landslide.  相似文献   
105.
106.
Contemporary deposition (artificial marker horizon, 3.5 years) and long-term accumulation rates (210Pb profiles, ~150 years) of sediment and associated carbon (C), nitrogen (N), and phosphorus (P) were measured in wetlands along the tidal Savannah and Waccamaw rivers in the southeastern USA. Four sites along each river spanned an upstream-to-downstream salinification gradient, from upriver tidal freshwater forested wetland (TFFW), through moderately and highly salt-impacted forested wetlands, to oligohaline marsh downriver. Contemporary deposition rates (sediment, C, N, and P) were greatest in oligohaline marsh and lowest in TFFW along both rivers. Greater rates of deposition in oligohaline and salt-stressed forested wetlands were associated with a shift to greater clay and metal content that is likely associated with a change from low availability of watershed-derived sediment to TFFW and to greater availability of a coastal sediment source to oligohaline wetlands. Long-term accumulation rates along the Waccamaw River had the opposite spatial pattern compared to contemporary deposition, with greater rates in TFFW that declined to oligohaline marsh. Long-term sediment and elemental mass accumulation rates also were 3–9× lower than contemporary deposition rates. In comparison to other studies, sediment and associated nutrient accumulation in TFFW are lower than downriver/estuarine freshwater, oligohaline, and salt marshes, suggesting a reduced capacity for surface sedimentation (short-term) as well as shallow soil processes (long-term sedimentation) to offset sea level rise in TFFW. Nonetheless, their potentially large spatial extent suggests that TFFW have a large impact on the transport and fate of sediment and nutrients in tidal rivers and estuaries.  相似文献   
107.
Incubation experiments were adopted to characterize the rates and pathways of iron reduction and the contributions to anaerobic organic matter mineralization in the upper 0–5 cm of sediments along a landscape-scale inundation gradient in tidal marsh sediments in the Min River Estuary, Southeast China. Similar sediment characteristics, single-species vegetation, varied biomass and bioturbation, distinct porewater pH, redox potential, and electrical conductivity values have resulted in a unique ecogeochemical zonation along the inundation gradient. Decreases in solid-phase Fe(III) and increases in nonsulfidic Fe(II) and iron sulfide were observed in a seaward direction. Porewater Fe2+ was only detected in the upland area. High rates of iron reduction were observed in incubation jars, with significant accumulations of nonsulfidic Fe(II), moderate accumulations of iron sulfides, and negligible accumulations of porewater Fe2+. Most of the iron reduction was microbially mediated rather than coupled to reduced sulfides. Microbial iron reduction accounted for 20–89 % of the anaerobic organic matter mineralization along the inundation gradient. The rate and dominance of microbial iron reduction generally decreased in a seaward direction. The contributions of microbial iron reduction to anaerobic organic matter mineralization depended on the concentrations of bioavailable Fe(III), the spatial distribution of which was significantly related to tidal inundation. Our results clearly showed that microbial iron reduction in the upper sediments along the gradient is highly dependent on spatial scales controlled primarily by tidal inundation.  相似文献   
108.
In order to solve the problem of depth classification of the underwater target in a very low frequency acoustic field, the active component of cross spectra of particle pressure and horizontal velocity (ACCSPPHV) is adopted to distinguish the surface vessel and the underwater target. According to the effective depth of a Pekeris waveguide, the placing depth forecasting equations of passive vertical double vector hydrophones are proposed. Numerical examples show that when the sum of depths of two hydrophones is the effective depth, the sign distribution of ACCSPPHV has nothing to do with horizontal distance; in addition, the sum of the first critical surface and the second critical surface is equal to the effective depth. By setting the first critical surface less than the difference between the effective water depth and the actual water depth, that is, the second critical surface is greater than the actual depth, the three positive and negative regions of the whole ocean volume are equivalent to two positive and negative regions and therefore the depth classification of the underwater target is obtained. Besides, when the 20 m water depth is taken as the first critical surface in the simulation of underwater targets (40 Hz, 50 Hz, and 60 Hz respectively), the effectiveness of the algorithm and the correctness of relevant conclusions are verified, and the analysis of the corresponding forecasting performance is conducted.  相似文献   
109.
Tropical Atlantic climate change is relevant to the variation of Atlantic meridional overturning circulation (AMOC) through different physical processes. Previous coupled climate model simulation suggested a dipole-like SST structure cooling over the North Atlantic and warming over the South Tropical Atlantic in response to the slowdown of the AMOC. Using an ocean-only global ocean model here, an attempt was made to separate the total influence of various AMOC change scenarios into an oceanic-induced component and an atmospheric-induced component. In contrast with previous freshwater-hosing experiments with coupled climate models, the ocean-only modeling presented here shows a surface warming in the whole tropical Atlantic region and the oceanic-induced processes may play an important role in the SST change in the equatorial south Atlantic. Our result shows that the warming is partly governed by oceanic process through the mechanism of oceanic gateway change, which operates in the regime where freshwater forcing is strong, exceeding 0.3 Sv. Strong AMOC change is required for the gateway mechanism to work in our model because only when the AMOC is sufficiently weak, the North Brazil Undercurrent can flow equatorward, carrying warm and salty north Atlantic subtropical gyre water into the equatorial zone. This threshold is likely to be model-dependent. An improved understanding of these issues may have help with abrupt climate change prediction later.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号