首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   299篇
  免费   3篇
  国内免费   1篇
大气科学   3篇
地球物理   7篇
地质学   3篇
海洋学   1篇
天文学   283篇
自然地理   6篇
  2023年   2篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2015年   4篇
  2013年   4篇
  2012年   1篇
  2011年   10篇
  2010年   9篇
  2009年   22篇
  2008年   17篇
  2007年   29篇
  2006年   23篇
  2005年   28篇
  2004年   27篇
  2003年   25篇
  2002年   31篇
  2001年   15篇
  2000年   12篇
  1999年   12篇
  1998年   13篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有303条查询结果,搜索用时 15 毫秒
101.
Magnetic activity in the photosphere and chromosphere of the M dwarf EY Dra is studied and possible correlations between the two are investigated using photometric observations in the V and R bands and optical and near infrared spectroscopy. The longitudinal spot configuration in the photosphere is obtained from the V band photometry, and the chromospheric structures are investigated using variations in the Hα line profile and observations of the Paschen β line. The shape of the V band light‐curve indicates two active regions on the stellar surface, about 0.4 in phase apart. The spectroscopic observations show enhanced Hα emission observed close to the phases of the photometrically detected starspots. This could indicate chromospheric plages associated with the photospheric starspots. Some indications of prominence structures are also seen. The chromospheric pressure is limited to log mTR < –4 based on the non‐detection of emission in the Paschen β wavelength region. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
102.
Stellar angular diameters determined interferometrically are generally established by fitting the observed visibility data with a curve appropriate for a uniformly illuminated disc. The resulting uniform-disc diameters must be corrected for the effects of limb darkening in order to determine the true angular diameters of the stars. An extensive grid of limb-darkening corrections, based directly on the centre-to-limb intensity variations for Kurucz model stellar atmospheres, has been computed without the intermediate step of a parametrized representation of the centre-to-limb variation. The limitations of this method of correction are discussed.  相似文献   
103.
Very-high-resolution ( R ∼160 000) spectroscopic observations are presented for the early B-type star, HD 83206. Because it has very sharp metal lines, this star affords an opportunity to test theories of model atmospheres and line formation. Non-LTE model atmosphere calculations have been used to estimate the atmospheric parameters and absolute metal abundances (C, N, O, Mg and Si); an LTE analysis was also undertaken to investigate the validity of this simpler approach and to estimate an iron abundance. For the non-LTE calculations, there is excellent agreement with observations of the Balmer lines H α and H δ and the lines of Si  ii and Si  iii for atmospheric parameters of T eff≃21 700±600 K and log  g ≃4.00±0.15 dex. The agreement is less convincing for the LTE calculations, and a higher gravity is deduced. Careful comparison of the metal line profiles with non-LTE calculations implies that the projected rotational and microturbulent velocities have maximum values of ≃5 and ≃2 km s−1, respectively. The latter value is smaller than has often been adopted in LTE model atmosphere analyses of main-sequence stars. Non-LTE absolute metal abundances are estimated, and a comparison with those for normal B-type stars (deduced using similar non-LTE techniques) shows no significant differences. A comparison of the abundances deduced using non-LTE and LTE calculations implies systematic differences of 0.1–0.2 dex, showing the importance of using a non-LTE approach when accurate absolute abundances are required. Its location in the Hertzsprung–Russell diagram and normal metal abundance lead us to conclude that HD 83206 is probably a main-sequence B-type star. As such, it is among the sharpest-lined young B-type star discovered to date.  相似文献   
104.
105.
The continuum emission of stellar flares in UV and visible bands can be enhanced by two or even three orders of magnitude relative to the quiescent level and is usually characterized by a blue colour. It is difficult for thermal atmospheric models to reproduce all these spectral features. If the flaring process involves the acceleration of energetic electrons which then precipitate downwards to heat the lower atmosphere, collisional excitation and ionization of ambient hydrogen atoms by these non-thermal electrons could be important in powering the continuum emission. To explore such a possibility, we compute the continuum spectra from an atmospheric model for a dMe star, AD Leo, at its quiescent state, when considering the non-thermal effects by precipitating electron beams. The results show that if the electron beam has an energy flux large enough (for example, ℱ1∼1012 erg cm−2 s−1), the U -band brightening and, in particular, the U − B colour are roughly comparable with observed values for a typical large flare. Moreover, for electron beams with a moderate energy flux ℱ1≲1011 erg cm−2 s−1, a decrease of the emission at the Paschen continuum appears. This can explain at least partly the continuum dimming observed in some stellar flares. Adopting an atmospheric model for the flaring state can further raise the continuum flux, but it yields a spectral colour incomparable with observations. This implies that the non-thermal effects may play the chief role in powering the continuum emission in some stellar flares.  相似文献   
106.
107.
William H. Smyth  M.C. Wong 《Icarus》2004,171(1):171-182
Two-dimensional model calculations (altitude and solar zenith angle) are performed to investigate the impact of electron chemistry on the composition and structure of Io's atmosphere. The calculations are based upon the model of Wong and Smyth (2000, Icarus 146, 60-74) for Io's SO2 sublimation atmosphere with the addition of new electron chemistry, where the interactions of the electrons and neutrals are treated in a simple fashion. The model calculations are presented for Io's atmosphere at western elongation (dusk ansa) for both a low-density case (subsolar temperature of 113 K) and a high-density case (subsolar temperature of 120 K). The impact of electron-neutral chemistry on the composition and structure of Io's atmosphere is confined primarily to an interaction layer. The penetration depth of the interaction layer is limited to high altitudes in the thicker dayside atmosphere but reaches the surface in the thinner dayside and/or nightside atmosphere at larger solar zenith angles. Within most of the thicker dayside atmosphere, the column density of SO2 is not significantly altered by electrons, but in the interaction layer all number densities are significantly altered: SO2 is reduced, O, SO, S, and O2 are greatly enhanced, and O, SO, and S become comparable to SO2 at high altitudes. For the thinner nightside atmosphere, the species number densities are dramatically altered: SO2 is drastically reduced to the least abundant species of the SO2 family, SO and O2 are significantly reduced at all altitudes, and O and S are dramatically enhanced and become the dominant species at all altitudes except near the surface. The interaction layer also defines the location of the emission layer for neutrals excited by electron impact and hence determines the fraction of the total neutral column density that is visible in remote observation. Electron chemistry may also impact the ratio of the equatorial to polar SO2 column density deduced from Lyman-α images and the north-south alternating and System III longitude-dependent asymmetry observed in polar O and S emissions.  相似文献   
108.
Summary In this review we discuss recent work and progress in the modelling of photospheres of stars of spectral types F and later. Special emphasis is laid on advances as regards the consideration of atomic and molecular blanketing, non-LTE and convection and other dynamic processes. In a special chapter we discuss the possibilities of semi-empirical modelling of late-type photospheres. In the conclusions we find that much important work remains in this field, but that a considerable part of this work may in fact be carried out in a near future.  相似文献   
109.
Local thermodynamic equilibrium (LTE) absolute and differential abundances are presented for a peculiar metal-rich B-type star, HD 135485. These suggest that HD 135485 has a general enrichment of ∼0.5 dex in all the metals observed (C, N, O, Ne, Mg, Al, Si, P, S, Cl, Ar, Sc, Ti, Cr, Mn, Fe and Sr), except for nickel. The helium enhancement and hence hydrogen deficiency can account for ≤ 0.2 dex of this enhancement of metals, with the additional enhancement probably being representative of the progenitor gas. However, some of the metals appear to have greater enhancements, which may have occurred during the star's evolution. The significantly larger nitrogen abundance coupled with a modest helium enhancement observed in HD 135485 indicates that carbon–nitrogen (CN) processed material has possibly contaminated the stellar surface. Neon and carbon enhancements may indicate that helium core flashes have also occurred in HD 135485. Some of the iron-group elements (viz. Mn and Ni) appear to have similar abundance patterns to that of silicon Ap stars, but it is uncertain how these abundance patterns formed if they were not present in the progenitor gas. From a kinematical investigation it is unclear whether this star formed in a metal-rich region as implied by its chemical composition. From its position in the Hertzsprung–Russell diagram, HD 135485 would appear to be an evolved star lying close to or on the horizontal branch.  相似文献   
110.
Priscilla N Mohammed 《Icarus》2003,166(2):425-435
Recently, a model for the centimeter-wavelength opacity of PH3 under conditions characteristic of the outer planets was developed by Hoffman et al. (2001, PhD thesis), based on centimeter wavelength laboratory measurements. New laboratory measurements have been conducted which show that this model is also accurate at low pressures and temperatures, and at millimeter wavelengths such as will be employed in Cassini Ka-band (9.3 mm) radio occultation studies. The opacity of PH3 in a hydrogen/helium (H2/He) atmosphere has been measured at frequencies in the Ka-band region at 32.7 GHz (9.2 mm), 35.6 GHz (8.4 mm), 37.7 GHz (8.0 mm), and 39.9 GHz (7.5 mm) at pressures of 0.5, 1, and 2 bar and at temperatures of 295, 209, and 188 K. Additionally, new high-precision laboratory measurements of the opacity of NH3 in an H2/He atmosphere have been conducted under the same temperature and pressure conditions described for PH3. These new measurements better constrain the NH3 opacity model supporting use of a Ben-Reuven lineshape model. These measurements will also elucidate the interpretation of millimeter wavelength observations conducted with the NRAO/VLA at 43 GHz (7 mm).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号