首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23675篇
  免费   4613篇
  国内免费   4824篇
测绘学   2807篇
大气科学   11314篇
地球物理   4395篇
地质学   5868篇
海洋学   3124篇
天文学   254篇
综合类   1501篇
自然地理   3849篇
  2024年   153篇
  2023年   637篇
  2022年   925篇
  2021年   949篇
  2020年   917篇
  2019年   1101篇
  2018年   870篇
  2017年   697篇
  2016年   738篇
  2015年   899篇
  2014年   1426篇
  2013年   1066篇
  2012年   1259篇
  2011年   1324篇
  2010年   1294篇
  2009年   1309篇
  2008年   1362篇
  2007年   1267篇
  2006年   1252篇
  2005年   1271篇
  2004年   1142篇
  2003年   1104篇
  2002年   1007篇
  2001年   977篇
  2000年   928篇
  1999年   879篇
  1998年   814篇
  1997年   826篇
  1996年   846篇
  1995年   808篇
  1994年   657篇
  1993年   491篇
  1992年   500篇
  1991年   382篇
  1990年   466篇
  1989年   320篇
  1988年   26篇
  1987年   32篇
  1986年   22篇
  1985年   16篇
  1984年   23篇
  1983年   19篇
  1982年   15篇
  1981年   9篇
  1980年   10篇
  1979年   6篇
  1977年   8篇
  1976年   7篇
  1974年   6篇
  1954年   8篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
吴俞  李玉梅  李勋  冯箫  姜小云 《气象》2023,(2):235-248
应用面向降水过程的时空检验方法,评估了中国气象局广东快速更新同化数值预报系统(CMA-GD)、上海数值预报系统(CMA-SH9)和中尺度天气数值预报系统(CMA-MESO)的海南岛暖季(2019—2020年的4—9月)非台风降水日小时降水预报效果,结果表明:三家模式均能捕捉不同流场条件下的降水空间分布形态及降水日变化特征,但CMA-GD和CMASH9的降水频率和强度总体偏多偏强,其中CMA-GD降水频率偏多近10%,CMA-SH9平均小时雨强偏强近4 mm·h-1,CMA-MESO雨强在5 mm·h-1以上的降水多分布在西南部和中部山区,与实况空间分布差异较大。三家模式降水预报最易开始和降水峰值时间平均偏早1~3 h,而降水最易结束时间偏晚1~3 h;模式的大气层高层露点温度和不稳定能量预报值偏大,不稳定能量出现时间偏早,近地层逆温层特征预报失真,降水预报的开始时间倾向于提前、降水持续时间偏长。三家模式的昼间海南岛北部沿海的海陆风辐合带预报偏强,其中CMA-SH9尤为明显,与该模式降水强度明显偏强特征相一致;CMAGD的夜间南部沿海的海陆风辐...  相似文献   
102.
侯淑梅  朱晓清  史茜  唐巧玲  孟宪贵  刘畅  高荣珍  刁秀广 《气象》2023,49(11):1328-1342
2020年5月17日,山东省出现大范围强对流天气(简称“5·17”强对流),冰雹范围之广为近10年之首。对流风暴高度组织化,区域性的超级单体群以及一条长度超过500 km的强飑线造成此次极端强对流天气。利用ERA5再分析、加密自动气象观测站、多普勒天气雷达等资料,剖析了此次极端强对流天气的环境条件。结果表明:冷涡位于最有利于山东出现强对流的关键区,大尺度天气系统强迫强,对流层中层异常强的冷空气南下影响前期异常增暖的山东地区,造成“5·17”极端强对流。天气系统的异常程度更能代表动热力强迫的强度,异常程度达到2σ以上有可能造成极端强对流天气。当冷涡南下过程中强度减弱,但异常程度增加时,其东南象限仍能产生极端强对流天气。强的深层垂直风切变有利于对流风暴组织化发展,飑线的长轴走向与0~6 km垂直风切变矢量方向相同,新单体发生、发展、合并的区域位于风矢量差大值中心前沿。低层暖湿平流源源不断地向山东输送暖湿空气,是CAPE重建的机制,是超级单体群和长飑线得以长时间维持的主要能量来源。  相似文献   
103.
针对登陆华南台风降水及模式预报存在的突出问题,就当前关于登陆台风降水分布的不对称性及台风登陆后期持续性暴雨发生机理的研究状况进行回顾和分析,提出了需要深入研究的相关科学问题及模式预报技术改进的应对措施,为促进登陆华南台风暴雨预报工作和效果的不断改进提供参考。分析指出环境风场垂直切变、低层气团边界(如冷池边界)、干冷空气侵入、中尺度对流系统以及地形等是造成登陆华南台风降水不对称分布的重要影响因素。台风登陆后期华南发生的持续性暴雨往往与季风活动增强相关,活跃的西南季风为强降水中尺度对流系统(MCSs)发展提供有利条件,MCSs通过潜热加热反馈于大尺度环流,可使台风涡旋环流和西南季风得以维持并致使MCSs反复发生发展、暴雨持续。开展相关科学问题的深入研究,有针对性地考察评估目前模式的预报性能并提出有效改进方案,是进一步提高模式预报效果的重要途径。  相似文献   
104.
为评价用于公众气象服务的精细化多模式客观集成预报服务产品(refined multi-model objective consensus forecasting service products,以下简称OCF)多模式集成气温预报效果,分析其误差成因,以中国区域OCF日最高气温和日最低气温预报检验为切入点,对服务影响较大的大误差日及其典型特例——降温日开展检验分析,并与参与OCF集成的ECMWF和NCEP气温预报进行对比。结果表明:OCF日最高气温和日最低气温总体上预报性能优于参与集成的模式预报,准确率夏季高冬季低,拉开了气温变化范围,也有效减小了误差。OCF的大误差日较少,但2~3 d时效及冬半年的大误差日较ECMWF多,与集成的模式预报性能、降温天气相关。针对降温日的检验分析发现:OCF、ECMWF和NCEP在降温日的预报性能有所下降,OCF日最高气温预报误差增长尤其快;OCF对降温日的日最低气温、非降温区域的日最高气温进行了有效订正,但在降温日的降温区域里,其日最高气温预报有明显的正误差特征。基于以上分析,提出了OCF气温集成订正技术改进方向,说明针对性的检验更利于发现客观模式预报及集成订正的问题。  相似文献   
105.
杨丰华  刘仁强 《高原气象》2023,(6):1529-1535
通常基于准地转的变换的欧拉平均框架下提出的涡动热通量近似理论计算极区平流层温度变化的动力和非绝热加热贡献,但是这可能会带来一定的误差。本文根据Liu and Fu(2019)提出的欧拉平均框架下新形式的面积加权平均的热力学能量方程,通过滑动累加得到逐月的温度变化方程。再利用1980-2019年欧洲中期天气预报中心第五代再分析资料(EuropeanCentreforMedium-range Weather Forecasts fifth reanalysis data, ERA5),计算北半球极区低平流层100 hPa在全时段(1980-2019年)和两个分时段(1980-1999年、 2000-2019年)各月温度增量、动力加热、非绝热加热和对流加热项(W项)的气候平均值,进而讨论涡动热通量近似理论成立的最佳参考纬度。结果表明,新导出的W项使得极区累积的动力和非绝热加热项之和与温度增量项之间的误差在冬春季减少了一半。在100 hPa上,W项随月份和纬度变化,尤其在冬春季节对温度变化贡献明显,由此得到涡动热通量近似成立的最佳参考纬度应该在W项的零等值线附近。进一步验证表明参考纬度可以取在...  相似文献   
106.
检验梅雨期降水的预报效果,对于提升梅雨期降水预报能力、减少梅雨期降水带来的人员伤亡和经济财产损失有着重要的意义。文章对安徽省2021年梅雨期(6月10日—7月10日)六个客观模式和一个主观订正预报产品进行了检验分析,其中包含了三个区域模式数值预报(中国气象局中尺度天气数值预报系统(简称CMA-MESO)、中国气象局上海数值预报模式系统(简称CMA-SH9)、安徽WRF)、三个全球模式数值预报(中国气象局全球同化预报系统(简称CMA-GFS)、欧洲中期天气预报中心确定性预报模式(简称ECMWF)、美国国家环境预报中心全球预报系统(简称NCEP-GFS))和安徽智能网格主观订正预报的降水产品,进行了检验分析,结果表明:传统检验中安徽智能网格和区域模式对晴雨准确率的预报效果优于全球模式,又以CMA-MESO最优;在暴雨及以上量级的强降水预报中,传统检验表明安徽智能网格预报的得分最高(23.83),ECMWF模式则是客观模式预报中效果最好的(20.12),CMA-SH9次之(19.34);通过对除安徽智能网格以外的各个客观数值模式进行的MODE空间检验可知,不同数值模式间暴雨预报误差原因不尽相同,ECMWF与各区域数值模式主要是由雨区位置的预报偏差,尤其是纬度偏差导致的,NCEP-GFS全球模式对降水强度和雨区面积的预报偏弱偏小比较明显,CMA-GFS在强降水方面的预报可参考性较差;各个主客观预报暴雨及以上量级预报,整体表现出较明显的日变化特征,在午夜前后、上午时段TS评分较高,而午后到傍晚评分较低,这个现象或许是梅雨期的午后降水多以地表太阳加热引起的短历时热对流降水为主造成的。  相似文献   
107.
利用WRF(Weather Research and Forecast)模式及WRFDA(WRF model data assimilation system)系统,针对2017年台风“天鸽”个例通过同化雷达径向速度(Vr)和反射率因子(RF),研究水凝物控制变量的雷达资料同化对台风分析预报的影响。研究表明:雷达径向速度的直接同化有效地改进了模式初始场中台风涡旋区的中小尺度信息,分析场中产生了气旋性的风场增量,对模式背景场中的台风有显著增强作用。通过在传统控制变量中扩展针对水凝物的控制变量可有效地同化雷达反射率因子资料,对初始场的水物质进行调整,并对随后确定性预报的台风路径和强度都有一定的正效果。此外,相比没有水凝物控制变量的雷达同化试验,加入了水凝物控制变量的雷达资料同化试验降水预报效果更好。这为将我国近海的地基多普勒天气雷达用于台风初始化分析和预报提供了一定的技术支撑和保障。  相似文献   
108.
陈良吕  高松 《湖北气象》2023,(2):160-169
为了更加直观和深入地理解对流尺度集合预报中的降水集合预报产品,以便进一步向预报员推广应用,本文开展了基于对流尺度集合预报方法对2021年8月28—29日的一次暴雨过程的预报性能分析,对集合预报的暴雨和大暴雨量级降水预报技巧进行了综合分析。结果表明:(1)不同集合成员降水预报结果的差异随着降水量级的增大越发明显,预报最优和最差的成员的TS评分相差0.3以上。(2)概率匹配平均预报对于暴雨和大暴雨量级降水的预报技巧优于控制预报,也优于集合平均。集合平均由于集合成员预报的平滑作用导致其对极端降水不敏感,因此,简单的集合平均不适合于大暴雨以上量级的极端降水预报。(3)从最小值预报到最大值预报,随着集合百分位的增大,命中率、空报率和频率偏差均逐渐增大,70%或者80%集合百分位预报的预报技巧最优,且优于集合平均和概率匹配平均预报。(4)对于重庆东北部偏西地区出现的大暴雨量级降水,较长预报时效集合概率预报均预报出了一定的降水概率,最长提前60 h,相应的最优的集合成员的降水预报与实况也较为接近。  相似文献   
109.
流域尺度的降水短期气候预测水平对流域的防灾减灾具有重要价值。为了进一步提高中国科学院大气物理研究所新一代大气环流模式IAP AGCM 4.1在淮河和长江流域夏季降水预测效果,利用旋转经验正交分解(Rotated Empirical Orthogonal Function, REOF)方法对两个流域夏季降水区域特征进行分析的基础上,建立了一个适用于流域的分区经验正交分解(Empirical Orthogonal Function, EOF)订正方案,并利用IAP AGCM 4.1气候预测系统在两个流域的夏季降水共30年(1981~2010年)的集合回报试验结果进行了订正试验。结果表明分区订正方法明显改进了模式对淮河流域的夏季降水预测水平,淮河流域的流域平均相关系数从0.03提高到了0.22。对长江流域的季度降水预报也有显著的改进效果,平均相关系数从-0.05提高到0.24。分区订正结果明显优于流域整体订正方案,证明了基于REOF分析确定降水具有强局地性特征的订正区域,能够很好地提高EOF订正方法的效果稳定性,这对其他流域降水预测的订正研究具有很好的借鉴意义。  相似文献   
110.
基于ERA5月平均再分析资料,利用Lorenz环流分解方法从定常和瞬变以及基流和涡旋的角度对比了北极与青藏高原臭氧低值区的动力输送特征。结果表明:动力总输送在两地上平流层作用最强,均使其臭氧浓度降低,且定常输送均强于瞬变输送,纬向与经向输送的作用均大致相反。然而,动力输送在北极地区的作用强度远大于青藏高原地区。北极地区纬向输送使得平流层中上层臭氧浓度降低,平流层下层臭氧浓度升高,经向输送的作用与之相反且强度明显偏弱,二者均主要作用于上平流层。青藏高原地区纬向和经向输送除在上平流层均使得臭氧浓度降低外,二者作用大致相反且强度相当,输送大值区在垂直方向上存在双中心结构,分别位于上平流层与上对流层—下平流层(Upper Troposphere–Lower Stratosphere,简称UTLS)区。两地区纬向和经向输送的差异均主要由定常涡旋输送所造成。青藏高原地区定常与瞬变输送的强度差异没有北极地区大。此外,两地定常和瞬变输送中涡旋对臭氧纬向平均的输送均起到主要作用,体现出涡旋输送在两地臭氧浓度变化的动力输送过程中发挥着至关重要的作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号