首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16332篇
  免费   2932篇
  国内免费   2869篇
测绘学   4008篇
大气科学   2078篇
地球物理   2375篇
地质学   8426篇
海洋学   1761篇
天文学   204篇
综合类   1515篇
自然地理   1766篇
  2024年   93篇
  2023年   499篇
  2022年   728篇
  2021年   850篇
  2020年   666篇
  2019年   834篇
  2018年   596篇
  2017年   697篇
  2016年   716篇
  2015年   820篇
  2014年   1281篇
  2013年   942篇
  2012年   1191篇
  2011年   1121篇
  2010年   965篇
  2009年   957篇
  2008年   953篇
  2007年   908篇
  2006年   855篇
  2005年   788篇
  2004年   610篇
  2003年   582篇
  2002年   502篇
  2001年   512篇
  2000年   411篇
  1999年   349篇
  1998年   371篇
  1997年   323篇
  1996年   366篇
  1995年   288篇
  1994年   245篇
  1993年   231篇
  1992年   239篇
  1991年   149篇
  1990年   146篇
  1989年   149篇
  1988年   31篇
  1987年   19篇
  1986年   16篇
  1985年   13篇
  1984年   17篇
  1983年   8篇
  1982年   18篇
  1981年   13篇
  1980年   13篇
  1979年   12篇
  1978年   5篇
  1977年   5篇
  1976年   4篇
  1975年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
基于MODIS积雪产品的高亚洲融雪末期雪线高度遥感监测   总被引:4,自引:0,他引:4  
以2001—2016年逐日MODIS积雪产品为主要数据源,在高亚洲区域发展了大尺度融雪末期雪线高度的遥感提取方法,并对其2001—2016年的时空变化特征进行了分析。提取方法首先对逐日的MODIS积雪覆盖率产品进行去云处理,获得积雪覆盖日数(SCD)数据集;并用冰川年物质平衡观测数据、融雪末期Landsat数据对提取终年积雪的MODIS SCD阈值进行率定;最后以MODIS SCD提取的终年积雪面积结合地形“面积—高程”曲线实现大尺度融雪末期雪线高度信息的提取。结果表明:① 高亚洲融雪末期雪线高度的空间异质性较强,总体上呈南高北低的纬度地带性分布规律;并因受山体效应的影响,雪线高度由高海拔地区向四周呈环形逐渐降低的特点。② 高亚洲2001—2016年融雪末期雪线高度总体上表现为明显的增加趋势。在744个30 km的监测格网中,24.2%的格网雪线高度呈显著增加,而仅0.9%的格网呈显著下降。除兴都库什、西喜马拉雅外,其他地区雪线高度均表现为升高趋势,显著上升的地区主要分布在天山、喜马拉雅中东部和念青唐古拉山等,其中以东喜马拉雅升高最为显著(8.52 m yr -1)。③ 夏季气温是影响高亚洲融雪末期雪线高度变化的主要因素,两者具有显著的正相关关系(R = 0.64,P < 0.01)。  相似文献   
102.
齐忠华  邱剑南  张力仁  吴长俊 《测绘通报》2019,(11):149-152,162
开展地理国情监测工作的目的是为了获取自然与人类社会经济活动引起的地表变化信息,具体包括地表自然要素、人文地理要素和社会经济信息的空间分布特征及其相互关系,是基本国情的重要组成部分,为政府管理决策、企业生产运营、人民群众生活提供数据基础和决策依据。本文基于地理国情监测数据,结合多种测绘地理信息数据和技术手段,探讨如何利用地理国情监测成果促进农业与旅游业的发展,以期深入挖掘和提升监测成果价值,全面拓展监测成果应用服务的新思路、新方向。  相似文献   
103.
李军  高涛 《测绘通报》2019,(12):159-162
铁运营阶段对隧道结构的变形监测保证了地铁运行的安全,而椭圆度检测是地铁隧道结构检测的重要工作。本文简单介绍了传统椭圆度检测的基本方法,分析了新型移动三维激光扫描检测系统基本原理及隧道椭圆度检测的方法和处理流程。通过工程案例实际应用以及对检测结果的综合分析,证明了移动三维激光扫描技术在盾构管片椭圆度检测中的优势。  相似文献   
104.
差分层析SAR是在层析SAR基础上发展起来的一种四维信息反演技术。它不仅实现了对雷达目标的三维分辨能力,同时可以获取目标的形变速率信息,可实现对目标方位-距离-高度-时间四维成像,这对实现城市基础设施动态形变监测、古建筑风险评估、重要工程安全监测等应用具有重要实际意义和价值。本文基于差分层析SAR成像原理,分析了成像处理过程中存在的问题,总结了差分层析SAR成像算法研究现状和特点;最后列举了差分层析SAR技术的主要应用领域,并对其技术发展趋势进行了展望。  相似文献   
105.
重点对地灾监测方面的方案研究进行了阐述,在构建大数据信息平台的设计方案时,以实现高度自动化的全方位监测功能为导向,依托导航卫星数据接收机和多源传感器,集成构建大数据信息平台的系统解决方案,主要包括扼流圈卫星天线、GNSS数据接收机、MEMS传感器、环境测量单元、防雷区域单元等功能元件的组成、多传感器的系统集成,以及全方位监测的功能实现。按照地灾监测大数据信息平台建设、构建大数据平台关键技术突破及检测数据解算软件功能实现的顺序,完成了GNSS实时监测预警应用网络系统HCmonitor的研发。综合应用多种手段实现地灾监测的功能升级,为解决重大灾害预警提供了新的思路和解决方案,该项成果在甘肃舟曲的灾后重建工程得到应用与推广。  相似文献   
106.
体育场作为重要的公共建筑,其安全可靠性至关重要。TM30全站仪是一款具有ART功能、小视场技术的高精度测量仪器。本文通过建立独立坐标系统,安置固定监测点标志,使用TM30全站仪,采用精密三维坐标法监测体育场主桁架结构在温度影响下的变形量,并对监测数据进行分析。结果表明利用TM30全站仪采用精密三维坐标法能够满足体育场结构变形监测的精度要求,并具有可靠、简便、高效的优点,为今后类似工程的变形监测积累了经验。  相似文献   
107.
108.
本文基于2014年、2017年、2018年三期GF1遥感影像,针对北京市石景山永定河河道变化特征,开展基于深度学习算法的河道自动提取与变化图斑自动发现。选择GEOWAY GFLP作为地理要素智能训练平台,采用基于疑似变化区域自动发现与人工交互确认相结合的遥感监测技术路线,选取典型水体样本进行分析、训练,构建深度学习卷积神经网络水体提取模型。通过分析与验证发现,基于深度学习水体提取模型自动提取的河道准确率高于90%,精度高于最小距离、最大似然及SVM分类方法,可用于城市河道的自动提取和变化发现。  相似文献   
109.
InSAR技术在地表监测应用方面被广泛研究,相比传统监测手段有其独特优势。本文通过对门头沟区二斜井地基INSAR滑坡监测的数据采集、处理与分析等过程的论述,介绍了地基InSAR技术在门头沟区二斜井滑坡灾害监测的应用,充分验证了地基INSAR技术在滑坡灾害应急监测应用中的优势,展示了地基InSAR系统在恶劣环境下的较强适应力,肯定了地基InSAR技术监测的应用前景,为今后同类应急监测项目提供一定的参考。  相似文献   
110.
【目的】探讨不同季节但路径相似的台风暴雨的相关特征,为不同季节的台风暴雨落区预报提供参考依据。【方法】利用常规的探空和地面资料以及NCEP/NCAR1°×1°全球再分析资料,计算2个强台风的水汽通量散度和湿位涡场。对比分析水汽通量辐合、湿位涡正压项(MPV1)和斜压项(MPV2)的水平和垂直分布特征,以及与暴雨落区的对应关系。【结果】秋季的"彩虹"台风高层副热带高压加强,而中低层冷空气和东南气流的汇合使"彩虹"台风的东侧和北侧获得更有利的动力环境条件;而夏季的"威马逊"台风北侧无冷空气影响,台风南侧外围强盛的西南季风气流卷入。台风"威马逊"期间,强的水汽通量辐合中心始终在台风及其残涡中心的南侧和西侧;台风"彩虹"登陆后60 h内一直持续有2支强盛的气流向台风中心输送水汽,而水汽通量的辐合中心与"威马逊"相反,位于台风中心的北侧和东侧,东南气流的卷入以及维持时间长使暴雨增幅。台风"彩虹"登陆后高层高值MPV1扰动下传,低层MPV2> 0并增强,湿斜压性得以增强,有利于垂直涡度增长,使台风低压得以维持和发展;登陆后48~66 h 925 hPa层MPV1为负值,使对流不稳定能量及潜热能的释放,有利于暴雨的维持。而台风"威马逊"登陆后湿斜压性增强不明显。2个台风强降水中心大致位于925 hPa MPV1正负中心过渡带偏向负中心一侧;"威马逊"过程低层MPV1负值中心在正值中心的左侧,对应着西南季风的汇入区;而"彩虹"过程低层MPV1负值中心在正值中心的右侧,对应着冷空气和东南气流的汇合区。这是2个台风暴雨落区差异的成因之一。【结论】本研究得出的湿位涡诊断结果对台风暴雨落区预报具有较好的指示意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号