首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   18篇
  国内免费   10篇
测绘学   4篇
大气科学   4篇
地球物理   52篇
地质学   73篇
海洋学   4篇
天文学   9篇
综合类   7篇
自然地理   50篇
  2023年   2篇
  2022年   1篇
  2021年   8篇
  2020年   9篇
  2019年   8篇
  2018年   6篇
  2017年   13篇
  2016年   5篇
  2015年   5篇
  2014年   4篇
  2013年   17篇
  2012年   6篇
  2011年   10篇
  2010年   7篇
  2009年   8篇
  2008年   8篇
  2007年   4篇
  2006年   8篇
  2005年   10篇
  2004年   3篇
  2003年   8篇
  2002年   4篇
  2001年   7篇
  2000年   5篇
  1999年   10篇
  1998年   7篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1993年   1篇
  1992年   5篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
排序方式: 共有203条查询结果,搜索用时 93 毫秒
121.
We apply the process‐based, distributed TOPKAPI‐ETH glacio‐hydrological model to a glacierized catchment (19% glacierized) in the semiarid Andes of central Chile. The semiarid Andes provides vital freshwater resources to valleys in Chile and Argentina, but only few glacio‐hydrological modelling studies have been conducted, and its dominant hydrological processes remain poorly understood. The catchment contains two debris‐free glaciers reaching down to 3900 m asl (Bello and Yeso glaciers) and one debris‐covered avalanche‐fed glacier reaching to 3200 m asl (Piramide Glacier). Our main objective is to compare the mass balance and runoff contributions of both glacier types under current climatic conditions. We use a unique dataset of field measurements collected over two ablation seasons combined with the distributed TOPKAPI‐ETH model that includes physically oriented parameterizations of snow and ice ablation, gravitational distribution of snow, snow albedo evolution and the ablation of debris‐covered ice. Model outputs indicate that while the mass balance of Bello and Yeso glaciers is mostly explained by temperature gradients, the Piramide Glacier mass balance is governed by debris thickness and avalanches and has a clear non‐linear profile with elevation as a result. Despite the thermal insulation effect of the debris cover, the mass balance and contribution to runoff from debris‐free and debris‐covered glaciers are similar in magnitude, mainly because of elevation differences. However, runoff contributions are distinct in time and seasonality with ice melt starting approximately four weeks earlier from the debris‐covered glacier, what is of relevance for water resources management. At the catchment scale, snowmelt is the dominant contributor to runoff during both years. However, during the driest year of our simulations, ice melt contributes 42 ± 8% and 67 ± 6% of the annual and summer runoff, respectively. Sensitivity analyses show that runoff is most sensitive to temperature and precipitation gradients, melt factors and debris cover thickness. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
122.
A raster‐based glacier sub‐model was successfully introduced in the distributed hydrological model FEST‐WB to simulate the water balance and surface runoff of large Alpine catchments. The glacier model is based on temperature‐index approach for melt, on linear reservoir for melt water propagation into the ice and on mass balance for accumulation; the initialization of the volume of ice on the basin was based on a formulation depending on surface topography. The model was first tested on a sub‐basin of the Rhone basin (Switzerland), which is for 62% glaciated; the calibration and validation were based on comparison between simulated and observed discharge from 1999 to 2008. The model proved to be suitable to simulate the typical discharge seasonality of a heavily glaciated basin. The performance of the model was also tested by simulating discharge in the whole Swiss Rhone basin, in which glaciers contribution is not negligible, in fact, in summer, about the 40% of the discharge is due to glacier melt. The model allowed to take into account the volume of water coming from glaciers melt and its simple structure is suitable for analysis of the effects of climate change on hydrological regime of high mountain basins, with available meteorological forcing from current RCM. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
123.
In glacier‐fed rivers, melting of glacier ice sustains streamflow during the driest times of the year, especially during drought years. Anthropogenic and ecologic systems that rely on this glacial buffering of low flows are vulnerable to glacier recession as temperatures rise. We demonstrate the evolution of glacier melt contribution in watershed hydrology over the course of a 184‐year period from 1916 to 2099 through the application of a coupled hydrological and glacier dynamics model to the Hood River basin in Northwest Oregon, USA. We performed continuous simulations of glaciological processes (mass accumulation and ablation, lateral flow of ice and heat conduction through supra‐glacial debris), which are directly linked with seasonal snow dynamics as well as other key hydrologic processes (e.g. evapotranspiration and subsurface flow). Our simulations show that historically, the contribution of glacier melt to basin water supply was up to 79% at upland water management locations. We also show that supraglacial debris cover on the Hood River glaciers modulates the rate of glacier recession and progression of dry season flow at upland stream locations with debris‐covered glaciers. Our model results indicate that dry season (July to September) discharge sourced from glacier melt started to decline early in the 21st century following glacier recession that started early in the 20th century. Changes in climate over the course of the current century will lead to 14–63% (18–78%) reductions in dry season discharge across the basin for IPCC emission pathway RCP4.5 (RCP8.5). The largest losses will be at upland drainage locations of water diversions that were dominated historically by glacier melt and seasonal snowmelt. The contribution of glacier melt varies greatly not only in space but also in time. It displays a strong decadal scale fluctuations that are super‐imposed on the effects of a long‐term climatic warming trend. This decadal variability results in reversals in trends in glacier melt, which underscore the importance of long‐time series of glacio‐hydrologic analyses for evaluating the hydrological response to glacier recession. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
124.
Petermann Glacier is a marine-terminating outlet glacier that had a 70 km-long floating ice tongue prior to a~270 km2calving event that was observed from satellite sensors in August 2010,shortening the ice tongue by~27 km.Further,in July 2012,another 10 km was lost through calving.In order to understand these events in perspective,here the authors perform a long-term data analysis of Petermann Glacier calving-front variability and ice velocity for each year in the 1990s–2000s,supplemented by available observations from the previous three decades.Five major(on the order of 100 km2)calving events are identified,with~153 km2calved from1959 to 1961,~168 km2in 1991,~71 km2in 2001,~270 km2in 2010,and~130 km2in 2012—as well as~31km2calved in 2008.The increased frequency of major calving events in recent years has left the front terminus position retreated nearly 25 km beyond the range of observed in previous decades.In contrast,stable ice-dynamics are suggested from ice-velocity measurements made each year between 1993–2012,which are on average1063 m yr–1,with limited interannual variability and no significant trend;moreover,there is no apparent relationship between ice-velocity variability and calving events.The degree to which the massive calving events in 2010and 2012 represent natural episodic variability or a response to atmospheric and/or oceanic changes remains speculative;however,melt-induced weakening of the floating ice tongue in recent years is strongly suggested.  相似文献   
125.
简述了泰山地区的地质背景概况,对比分析了国内外学者的研究成果、理论及分歧原因,实地考察了泰山地区角峰、刃脊等冰川地貌,并取样品进行热释光年龄分析显示其年代为(30.54±2.59)kaB.P.,相当于末次冰期主冰期中的Paudorf-Stillfried间冰阶时段。并从地貌特征与遥感数字2个方面分析研究,发现了一些冰川遗迹的信息,为泰山地区第四纪冰川研究提供了一定的佐证。  相似文献   
126.
笔者首次在塔县的老兵站、石头城和加油站等3处发现了古冰碛物,均呈残留冰碛台地分布,台地高程约为3 100m,表面可见大量正长岩漂砾。漂砾风化穴的主要类型为边墙形、蜂巢型和底穴型。在侵蚀切割该古冰碛物的砂砾层中,得到(62.07±2.44)ka的光释光年龄。同时与附近墓士塔格山和公格尔山古冰川的对比研究,表明该冰碛物时代可能为中更新世倒数第二次冰期,为塔县县城西侧斯顿古冰川向东冰进的产物。该冰碛物的发现具有重要的地质意义:可将斯顿山第四纪冰川遗迹划分为中更新世的倒数第二次冰期、晚更新世的末次冰期,以及全新世的新冰期和小冰期;进一步指示塔什库尔干断裂的左行走滑正断层性质;更新世,斯顿古冰川与墓士塔格冰川各自有明确的界线,不可能形成一个统一的冰盖。  相似文献   
127.
贡嘎山第四纪冰川遗迹及冰期划分   总被引:22,自引:1,他引:22  
在对贡嘎山现代冰川和古冰川考察研究的基础上,结合定位观测分析,对该区第四纪冰川遗迹进行了深入讨论,划分出三次冰期,即中更新世早期的倒数第三次冰期,中更新世晚期的倒数第二次冰期和晚更新世的末次冰期,以及全新世的新冰期和小冰期。提出在早更新世时,由于山体未达到当时冰川发育的雪线高度,所以未发育冰川;中更新世早期的冰期冰川为半覆盖式冰川类型,规模不大;中更新世晚期的冰期冰川是本区最大冰川作用时期,形成网状山麓冰川,东坡冰川曾达磨西台地;晚更新世冰期冰川以山谷冰川为主,以后规模逐次缩小。  相似文献   
128.
Subglacial lakes and jökulhlaups in Iceland   总被引:1,自引:0,他引:1  
Active volcanoes and hydrothermal systems underlie ice caps in Iceland. Glacier–volcano interactions produce meltwater that either drains toward the glacier margin or accumulates in subglacial lakes. Accumulated meltwater drains periodically in jökulhlaups from the subglacial lakes and occasionally during volcanic eruptions. The release of meltwater from glacial lakes can take place in two different mechanisms. Drainage can begin at pressures lower than the ice overburden in conduits that expand slowly due to melting of the ice walls by frictional and sensible heat in the water. Alternatively, the lake level rises until the ice dam is lifted and water pressure in excess of the ice overburden opens the waterways; the glacier is lifted along the flowpath to make space for the water. In this case, discharge rises faster than can be accommodated by melting of the conduits. Normally jökulhlaups do not lead to glacier surges but eruptions in ice-capped stratovolcanoes have caused rapid and extensive glacier sliding. Jökulhlaups from subglacial lakes may transport on the order of 107 tons of sediment per event but during violent volcanic eruptions, the sediment load has been 108 tons.  相似文献   
129.
A previous study of Fox [Fox, A.N. 1993. Snowline altitude and climate at present and during the Last Pleistocene Glacial Maximum in the Central Andes (5°–28°S). Ph.D. Thesis. Cornell University.] showed that for a fixed 0 °C isotherm altitude, the equilibrium-line altitude (ELA) of the Peruvian and Bolivian glaciers from 5 to 20°S can be expressed based on a log–normal expression of local mid-annual rainfall amount (P). In order to extrapolate the function to the whole Andes (10°N to 55°S) a local 0 °C isotherm altitude is introduced. Two applications of this generalised function are presented. One concerns the space evolution of mean inter-annual ELA for three decades (1961–1990) over the whole South American continent. A high-resolution data set (grid data: 10′ for latitude/longitude) of mean monthly air surface temperature and precipitation is used. Mean annual values over the 1961–1990 period were calculated. On each grid element, the mean annual 0 °C isotherm altitude is determined from an altitudinal temperature gradient and mean annual temperature (T) at ground level. The 0 °C isotherm altitude is then associated with the annual precipitation amount to compute the ELA. Using computed ELA and the digital terrain elevation model GTOPO30, we determine the extent of the glacierised area in Andean regions under modern climatic conditions. The other application concerns the ELA time evolution on Zongo Glacier (Bolivia), where inter-annual ELA variations are computed from 1995 to 1999. For both applications, the computed values of ELA are in good agreement with those derived from glacier mass balance measurements.  相似文献   
130.
Geomorphic evidence of former glaciation in the high Drakensberg of southern Africa has proven controversial, with conflicting glacial and non‐glacial interpretations suggested for many landforms. This paper presents new geomorphological, sedimentological and micromorphological data, and glacier mass‐balance modelling for a site in the Leqooa Valley, eastern Lesotho, preserving what are considered to be moraines of a former niche glacier that existed during the Last Glacial Maximum (LGM). The geomorphology and macro‐sedimentology of the deposits display characteristics of both active and passive transport by glacial processes. However, micromorphological analyses indicate a more complex history of glacial deposition and subsequent reworking by mass movement processes. The application of a glacier reconstruction technique to determine whether this site could have supported a glacier indicates a reconstructed glacier equilibrium line altitude (ELA) of 3136 m a.s.l. and palaeoglacier mass balance characteristics comparable with modern analogues, reflecting viable, if marginal glaciation. Radiocarbon dates obtained from organic sediment within the moraines indicate that these are of LGM age. The reconstructed palaeoclimatic conditions during the LGM suggest that snow accumulation in the Drakensberg was significantly higher than considered by other studies, and has substantial relevance for tuning regional climate models for southern Africa during the last glacial cycle. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号