首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22778篇
  免费   127篇
  国内免费   189篇
测绘学   109篇
大气科学   1001篇
地球物理   4277篇
地质学   10535篇
海洋学   1970篇
天文学   4477篇
综合类   90篇
自然地理   635篇
  2024年   5篇
  2023年   19篇
  2022年   32篇
  2021年   64篇
  2020年   84篇
  2019年   94篇
  2018年   1758篇
  2017年   1911篇
  2016年   1035篇
  2015年   401篇
  2014年   328篇
  2013年   422篇
  2012年   883篇
  2011年   1475篇
  2010年   1642篇
  2009年   1870篇
  2008年   1852篇
  2007年   2321篇
  2006年   1662篇
  2005年   611篇
  2004年   613篇
  2003年   656篇
  2002年   673篇
  2001年   626篇
  2000年   562篇
  1999年   353篇
  1998年   232篇
  1997年   251篇
  1996年   158篇
  1995年   186篇
  1994年   123篇
  1993年   84篇
  1992年   80篇
  1991年   5篇
  1989年   1篇
  1987年   3篇
  1985年   2篇
  1983年   2篇
  1982年   1篇
  1980年   2篇
  1979年   2篇
  1976年   2篇
  1973年   1篇
  1972年   2篇
  1971年   3篇
  1965年   2篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
131.
Gneissic rocks in the Chinese Altai Mountains have been interpreted as either Paleozoic metasedimentary rocks or Precambrian basement. This study reports geochemical and geochronological data for banded paragneisses and associated gneissic granitoids collected along a NE–SW traverse in the northwestern Chinese Altai. Petrological and geochemical data suggest that the protoliths of the banded gneisses were possibly immature sediments with significant volcanic input and that the gneissic granitoids were derived from I-type granites formed in a subduction environment. Three types of morphological features can be recognized in zircons from the banded gneisses and are interpreted to correlate with different sources. Zircons from five samples of banded paragneiss cluster predominantly between 466 and 528 Ma, some give Neoproterozoic ages, and a few yield discordant Paleoproterozoic to Archean ages. Zircon Hf isotopic compositions indicate that both juvenile/mantle and crust materials were involved in the generation of the source rocks from which these zircons were derived. In contrast, zircons occur ubiquitously as elongated euhedral prismatic crystals in the four samples of the gneissic granitoids, and define single populations for each sample with mean ages between 380 and 453 Ma. The general absence of Precambrian inheritance and positive zircon ?Hf values for these granitoids suggest insignificant crustal contribution to the generation of the precursor magmas. Our data can be interpreted in terms of a progressive accretionary history in early to middle Palaeozoic times, and the Chinese Altai may possibly represent a magmatic arc built on a continental margin dominated by Neoproterozoic rocks.  相似文献   
132.
The sulfur isotopic composition of carbonate associated sulfate (CAS) has been used to investigate the geochemistry of ancient seawater sulfate. However, few studies have quantified the reliability of δ34S of CAS as a seawater sulfate proxy, especially with respect to later diagenetic overprinting. Pyrite, which typically has depleted δ34S values due to authigenic fractionation associated with bacterial sulfate reduction, is a common constituent of marine sedimentary rocks. The oxidation of pyrite, whether during diagenesis or sample preparation, could thus adversely influence the sulfur isotopic composition of CAS. Here, we report the results of CAS extractions using HCl and acetic acid with samples spiked with varying amounts of pyrite. The results show a very strong linear relationship between the abundance of fine-grained pyrite added to the sample and the resultant abundance and δ34S value of CAS. This data represents the first unequivocal evidence that pyrite is oxidized during the CAS extraction process. Our mixing models indicate that in samples with much less than 1 wt.% pyrite and relatively high δ34Spyrite values, the isotopic offset imparted by oxidation of pyrite should be much less than ? 4‰. A wealth of literature exists on the oxidation of pyrite by Fe3+ and we believe this mechanism drives the oxidation of pyrite during CAS extraction, during which the oxygen used to form sulfate is taken from H2O, not O2. Consequently, extracting CAS under anaerobic conditions would only slow, but not halt, the oxidation of pyrite. Future studies of CAS should attempt to quantify pyrite abundance and isotopic composition.  相似文献   
133.
The massive sulfide deposits of the Iberian Pyrite Belt are interbedded with felsic volcanic rocks and shale, and underlain by several thousand meters of siliciclastic sedimentary rocks known as the PQ Group. Isotope geochemistry and regional geology are both consistent with equilibration of the ore-forming fluids with the PQ Group, prior to ore deposition near the former seafloor. The average Cu:Zn:Pb ratio of the PQ Group rocks (ca. 26:55:19) is similar to the weighted average of all the massive sulfide orebodies combined (ca. 25:52:23).The genetic relationship between massive sulfide deposits and a siliciclastic sedimentary metal source is explained here by a thermodynamic model, proposing that mildly reducing redox conditions imposed by equilibration with the sedimentary rocks are most critical for the formation of an effective ore-forming fluid. Relatively metal-rich but organic-poor pyrite-bearing shale undergoing dewatering of saline pore fluids is an effective source for the generation of sulfur-deficient but relatively iron and base metal-rich brines. Thus, we propose that the giant deposits of the Iberian Pyrite Belt owe their existence not to exceptionally metal-enriched (e.g., magmatic) fluids, but to the existence of a fairly ordinary but large metal source in reactive siliciclastic sediments, combined with an underlying igneous heat source and a particularly efficient mechanism of sulfide precipitation by mixing with H2S-rich fluids at or near the seafloor.Essentially similar mineral equilibria are imposed when saline fluids are buffered by typical continental basement rocks. Leaching of retrograde minerals and possibly residual salts from their magmatic or metamorphic prehistory is expected to generate similar, variably metal-rich but relatively sulfide-deficient fluids. Thus, the existence of mildly reducing rocks can be the dominant chemical control in the source of fluids generating many volcanogenic, Irish-type or sedex deposits, many of which are known to precipitate their metal load in response to biogenic sulfide addition at the ore deposition site.  相似文献   
134.
The study of granitic plutons of the Baikal Highland and the Tien Shan has made it possible to establish new features of their posthumous (after incorporation into the consolidated Earth’s crust) structural reworking and to understand the implications of the cataclastic flow for the exhumation of the crystalline basement in the studied regions. It is shown that granitic plutons undergo appreciable structural transformation at the stages of tectonic reactivation that is significantly separated in time from the moment of formation of plutons as geological bodies. The 3D cataclastic deformation is the main mode of structural reworking of granitic plutons, while the cataclastic flow is the main form of their mobility. Newly recognized slice structures characterize the volumetric deformation of granites.  相似文献   
135.
The lateral variability of structural elements in the collision zone of the Cretaceous-Paleocene Achaivayam-Valagin island arc with the northeastern Asian margin is considered. The similarity and difference of Eocene collision structural elements in the north and the south of Kamchatka are shown. In northern Kamchatka, the continent-arc boundary is traced along the Lesnaya-Vatyn Thrust Fault, which completed its evolution about 45 Ma ago. The thin, near-horizontal allochthon of this thrust, composed of island-arc rocks, overlies the deformed but unmetamorphosed terrigeneous sequences of the Asian margin. The general structure of this suture in the Kamchatka Isthmus and southern Koryakia is comparable with the uppermost subduction zone, where a thin lithospheric wedge overlaps intensely deformed sediments detached from the plunging plate. In southern Kamchatka (Malka Uplift of the Sredinny Range), the arc-continent collision started 55–53 Ma ago with thrusting of island-arc complexes over terrigenous rocks of continental margin. However, the thickness of the allochthon was much greater than in the north. Immediately after this event, both the autochthon and lower part of allochthon were deformed and subsided to a significant depth. This subsidence gave rise to metamorphism of both the autochthon (Kolpakov and Kamchatka groups, Kheivan Formation) and lower allochthon (Andrianovka and Khimka formations). The anomalously fast heating of the crust was most likely related to the ascent of asthenospheric masses due to slab breakoff, when the Eurasian Plate was plunging beneath the Achaivayam-Valagin arc.  相似文献   
136.
Experiments with peridotite minerals in simple (MgO–Al2O3–SiO2,CaO–MgO–SiO2 and CaO–MgO–Al2O3–SiO2)and natural systems were conducted at 1300–1500°Cand 6–10 GPa using a multi-anvil apparatus. The experimentsin simple systems demonstrated consistency with previous lowerpressure experiments in belt and piston–cylinder set-ups.The analysis of spatial variations in pyroxene compositionswithin experimental samples was used to demonstrate that pressureand temperature variations within the samples were less than0·4 GPa and 50°C. Olivine capsules were used in natural-systemexperiments with two mineral mixtures: SC1 (olivine + high-Alorthopyroxene + high-Al clinopyroxene + spinel) and J4 (olivine+ low-Al orthopyroxene + low-Al clinopyroxene + garnet). Theexperiments produced olivine + orthopyroxene + garnet ±clinopyroxene assemblages, occasionally with magnesite and carbonate-richmelt. Equilibrium compositions were derived by the analysisof grain rims and evaluation of mineral zoning. They were comparedwith our previous experiments with the same starting mixturesat 2·8–6·0 GPa and the results from simplesystems. The compositions of minerals from experiments withnatural mixtures show smooth pressure and temperature dependencesup to a pressure of 8 GPa. The experiments at 9 and 10 GPa producedandradite-rich garnets and pyroxene compositions deviating fromthe trends defined by the lower pressure experiments (e.g. higherAl in orthopyroxene and Ca in clinopyroxene). This discrepancyis attributed to a higher degree of oxidation in the high-pressureexperiments and an orthopyroxene–high-P clinopyroxenephase transition at 9 GPa. Based on new and previous resultsin simple and natural systems, a new version of the Al-in-orthopyroxenebarometer is presented. The new barometer adequately reproducesexperimental pressures up to 8 GPa. KEY WORDS: garnet; mineral equilibrium; multi-anvil apparatus; orthopyroxene; geobarometry  相似文献   
137.
The structure of anomalously uplifted areas in transverse ridges of the Vema, S o Paulo, and Romanche fracture zones is considered. It is concluded that their formation and eventual development in the present-day structure of the central Atlantic bottom proceeded during two stages. The first stage that corresponds to a short period at the Tortonian-Messinian transition (10 Ma ago) was marked by transportation of deep-seated rocks into the upper part of the lithosphere along thrust faults with mass motion in the meridional direction along the axis of the Mid-Atlantic Ridge. The second stage was characterized by contrasting highamplitude vertical movements from 10 to 3 Ma ago. It is suggested that near-meridional compression in the domains surrounding the Western Tethys in the Tortonian-Messinian resulted in deformation of the upper lithosphere within large transform fracture zones of the central Atlantic. The deformation that occurred 10 Ma ago was a manifestation of the global neotectonic epoch of the Earth.  相似文献   
138.
The rift-related geodynamic setting of the Late Precambrian geological evolution on the western slope of the South Urals is reconstructed on the basis of localization of lithotectonic complexes of this age, their formation conditions, and the geochemistry of rocks. The Early Riphean stage comprises accumulation of coarse-clastic rocks intercalating with alkaline volcanic rocks of the Navysh Complex, which is a constituent of the Ai Formation, and emplacement of doleritic and picritic intrusions of the Shuida Complex and melanocratic dolerite and gabbrodolerite of the Yusha Complex. The Middle Riphean stage is characterized by wide-spread coarse-clastic terrigenous rocks of the Mashak Formation that intercalate with volcanic rocks of the bimodal basalt-rhyolite association, the Berdyaush pluton of rapakivi granite, the Kusa-Kopan layered intrusive complex, the Lapyshta Complex of dolerites and picrites, and numerous occurrences of gabbrodolerites. The terrigenous rocks of the Vendian stage include conglomerate, gravelstone, and sandstone of the Asha Group, while igneous rocks comprise alkaline volcanics of the Arsha Complex, alkali gabbroids of the Miseli Complex, and melanocratic syenite of the Avashla Complex. The geological evolution of the region is distinguished by local (failed or aborted) rifting. The occurrence of lithotectonic complexes is controlled by dynamic conditions of rifting. A certain inheritance in the evolution may be traced for the Early and Middle Riphean and partly for the Late Riphean and Vendian.  相似文献   
139.
The petroleum resource potential is considered for the Atlantic, West Pacific, and East Pacific types of deepwater continental margins. The most considerable energy resources are concentrated at the Atlantic-type passive margins in the zone transitional to the ocean. The less studied continental slope of backarc seas of the generally active margins of the West Pacific type is currently not so rich in discoveries as the Atlantic-type margin, but is not devoid of certain expectations. In some of their parameters, the margins bounded by continental slopes may be regarded as analogs of classical passive margins. At the margins of the East Pacific type, the petroleum potential is solely confined to transform segments. In the shelf-continental-slope basins of the rift and pull-apart nature, petroleum fields occur largely in the upper fan complex, and to a lesser extent in the lower graben (rift) complex. In light of world experience, the shelf-continental-slope basins of the Arctic and Pacific margins of Russia are evaluated as highly promising.  相似文献   
140.
3D models of apparent magnetization and density of rocks allow us to provide insights into the deep structure of the Volga-Ural, Pericaspian, and Fore-Caucasus petroliferous basins. In the Volga-Ural Basin, some Riphean rifts reveal close spatial relations to Paleoproterozoic linear zones, presumably of the rift nature as well. The structure of the Paleoproterozoic Toropets-Serdobsk Belt is interpreted in detail. Rocks with petrophysical properties inherent to basic volcanics are established in the pre-Paleozoic basement of the marginal zone of the Pericaspian Basin. These rocks locally spread beyond the boundary escarpment and may be regarded as a part of the Riphean plume-related basaltic province. It is shown that the Pericaspian Basin was formed on the place of a triple junction of Riphean rifts: the Sarpa and Central Pericaspian oceanic branches and the continental branch of the Pachelma Aulacogen. The drastically different petrophysical properties of the basement beneath Baltica and the Astrakhan Arch indicate that this arch is an element of the large terrane that was attached to Baltica in the Vendian. The suture along which the Astrachan Terrane is conjugated with the basement of the central and southern segments of the Karpinsky Ridge is traced beneath the Paleozoic complex. A system of northwest-verging thrust faults formed during the collision between Scythia and Eurasia is mapped in the basement of the junction zone between the Karpinsky Ridge and Scythian Platform (Terrane). According to geological data, this event took place in the Early Paleozoic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号