首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   1篇
地球物理   1篇
地质学   21篇
海洋学   9篇
自然地理   3篇
  2020年   1篇
  2019年   6篇
  2015年   1篇
  2012年   1篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2008年   1篇
  2005年   2篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
排序方式: 共有34条查询结果,搜索用时 812 毫秒
21.
Approximately 1000 km of high resolution sleeve-gun array transects on the North Sea Fan, located at the mouth of the Norwegian Channel, reveal three dominant styles of sedimentation within a thick (> 900 m) Quaternary sediment wedge comprising numerous sequences. These are interpreted as: terrigenous hemipelagic sedimentation, large scale translational slides, and aprons of glaciogenic debris flow deposits contributing to considerable fan construction. Four large, buried translational slides involved sediment volumes upwards of 3000 km3 each and preceded the similarly dimensioned “first” Storegga Slide on the NE fan flank. Several thick (> 100 m) terrigenous hemipelagic deposits apparently represent long-lived (150–200 kyr) periods of sedimentation whose distribution indicates fan input via the Norwegian Channel. The upper sequences are each made upper sequences are each made up of one or several thick (> 100 m) aprons comprising stacked lensoid and/or lobate forms which range from 2 to 40 km in width and 15 to 60 m in thickness. They characterize debris flows attributed to periodic input from several phases of a Norwegian Channel ice stream reaching the shelf edge. Subsidence in the outer Norwegian Channel allowed preservation of several glaciation cycles represented by sheet erosion-bounded tills and progradational units. Much of the shelf/slope transition has been preserved, allowing a preliminary chronology of the fan sequences through correlation with borehole sediments in the Norwegian Channel. Debris flows, which signal the initial shelf-edge glaciation, are not recognized from the initial glaciation in the Channel (> 1.1 Myr) but are associated with a Middle Pleistocene and all following glacial erosion surfaces (GES) in the outer Norwegian Channel. This was followed by six further sequences, probably totalling over 13,000 km3 of sediment. At least four of these were shelf-edge ice-maximum events the last of which was Late Weichselian age (14C AMS). Considering earlier glaciation-related hemipelagic sedimentation, material since removed by the large slides, and extensive unmapped areas, total Quaternary fan sedimentation was in the vicinity of 20,000 km3.  相似文献   
22.
The tephrochronology of Iceland and the North Atlantic region is reviewed in order to construct a unified framework for the last 400 kyr BP. Nearly all of the tephra layers described are also characterised geochemically. A number of new tephra layers are analysed for the first time for their geochemical signature and a number of pre‐Holocene tephra layers have been given an informal denotation. The tephrostratigraphy of Ash Zone II is highlighted. Where possible the rhyolitic tephra layers found outside Iceland have been correlated to known Icelandic tephra layers or to the volcanic source area. The application of tephra fallout in various depositional environments is described and discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
23.
The most notable change in δ18O in Greenland ice cores during the Holocene occurs at 8200 cal. yr BP. Here we present a new high-resolution marine record from the northern North Sea, along with tree-ring data from Germany, which contain evidence of a pronounced temperature drop (>2°C) contemporaneous with that of the Greenland ice-core records. The synchronous timing of the cooling event in the Greenland ice-cores, marine record and tree-ring data from northwest Europe reflects a regional influence on the North Atlantic ocean–atmospheric system, suggesting a prominent role of the North Atlantic thermohaline circulation. The operation of the North Atlantic ocean circulation is sensitive to variation in the freshwater budget, implying that any change in freshwater flux is capable of altering the North Atlantic circulation system. We hypothesise minor but long-term freshwater fluxes in the final stages of the deglaciation of the Laurentide ice-sheet as a forcing mechanism. © 1998 John Wiley & Sons, Ltd.  相似文献   
24.
Tephra shards from the Vedde Ash eruption have been identified in two lakes from northwestern Russia and the Polar Ural Mountains. This is the most distal and easternmost occurrence of this regional tephra marker horizon found so far and it extends the area of the Vedde Ash tephra more than 1700 km further east than previously documented. This means that particles the size of fine sand have travelled more than 4000 km from the Katla volcano source, south Iceland. These findings offer a new possibility to correlate archives over a very long distance in the time period around the Younger Dryas.  相似文献   
25.
The northeastern high-latitude North Atlantic is characterised by the Bellsund and Isfjorden fans on the continental slope off west Svalbard, the asymmetrical ultraslow Knipovich spreading ridge and a 1,000 m deep rift valley. Recently collected multichannel seismic profiles and bathymetric records now provide a more complete picture of sedimentary processes and depositional environments within this region. Both downslope and alongslope sedimentary processes are identified in the study area. Turbidity currents and deposition of glacigenic debris flows are the dominating downslope processes, whereas mass failures, which are a common process on glaciated margins, appear to have been less significant. The slide debrite observed on the Bellsund Fan is most likely related to a 2.5–1.7 Ma old failure on the northwestern Barents Sea margin. The seismic records further reveal that alongslope current processes played a major role in shaping the sediment packages in the study area. Within the Knipovich rift valley and at the western rift flank accumulations as thick as 950–1,000 m are deposited. We note that oceanic basement is locally exposed within the rift valley, and that seismostratigraphic relationships indicate that fault activity along the eastern rift flank lasted until at least as recently as 1.5 Ma. A purely hemipelagic origin of the sediments in the rift valley and on the western rift flank is unlikely. We suggest that these sediments, partly, have been sourced from the western Svalbard—northwestern Barents Sea margin and into the Knipovich Ridge rift valley before continuous spreading and tectonic activity caused the sediments to be transported out of the valley and westward.  相似文献   
26.
Seafloor pockmarks and subsurface chimney structures are common on the Norwegian continental margin north of the Storegga Slide scar. Such features are generally inferred to be associated with fluid expulsion, and imply overpressures in the subsurface. Six long gravity and piston cores taken from the interior of three pockmarks were compared with four other cores taken from the same area but outside the pockmarks, in order to elucidate the origins and stratigraphy of these features and their possible association with the Storegga Slide event. Sulfate gradients in cores from within pockmarks are less steep than those in cores from outside the pockmarks, which indicates that the flux of methane to the seafloor is presently smaller within the pockmarks than in the adjacent undisturbed sediments. This suggests that these subsurface chimneys are not fluid flow conduits lined with gas hydrate. Methane-derived authigenic carbonates and Bathymodiolus shells obtained from a pockmark at >6.3 m below the seafloor indicate that methane was previously available to support a chemosynthetic community within the pockmark. AMS 14C measurements of planktonic Foraminifera overlying and interlayered with the shell-bearing sediment indicate that methane was present on the seafloor within the pockmark prior to 14 ka 14C years b.p., i.e., well before the last major Storegga Slide event (7.2 ka 14C years b.p., or 8.2 ka calendar years b.p.). These observations provide evidence that overpressured fluids existed within the continental margin sediments off Norway during the last major advance of Pleistocene glaciation.  相似文献   
27.
Core P1‐003MC was retrieved from 851 m water depth on the southern Norwegian continental margin, close to the boundary between the Norwegian Current (NC) and the underlying cold Norwegian Sea Deep Water. The core chronology was established by using 210Pb measurements and 14C dates, suggesting a sampling resolution of between 2 and 9 yr. Sea‐surface temperature (SST) variations in the NC are reconstructed from stable oxygen isotope measurements in two planktonic Foraminifera species, Neogloboquadrina pachyderma (d.) and Globigerina bulloides. The high temporal resolution of the SST proxy records allows direct comparison with instrumental ocean temperature measurements from Ocean Weather Ship (OWS) Mike in the Norwegian Sea and an air temperature record from the coastal island Ona, western Norway. The comparison of the instrumental and the proxy SST data suggests that N. pachyderma (d.) calcify during summer, whereas G. bulloides calcify during spring. The δ18O records of both species suggest that the past 70 yr have been the warmest throughout the past 600 yr. The spring and summer proxy temperature data suggest differences in the duration of the cold period of the Little Ice Age. The spring temperature was 1–3°C colder throughout most of the period between ca. AD 1400 and 1700, and the summer temperature was 1–2°C colder throughout most of the period between ca. AD 1400 and 1920. Fluctuations in the depth of the lower boundary of the NC have been investigated by examining grain size data and benthic foraminiferal assemblages. The data show that the transition depth of the lower boundary of the NC was deeper between ca. AD 1400 and 1650 than after ca. AD 1750 until present. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
28.
Ice‐rafted debris (IRD) seeded into the ocean from Northern Hemisphere ice sheets is found in ocean cores along the southwestern European margin through the last glacial period. It is known that the origin of this IRD, especially off Iberia, can vary between North America and western Europe during short‐lived episodes of greatly enhanced iceberg flux, known as Heinrich events, although in most Heinrich events the IRD has a North American source. During the longer times of much lower IRD fluxes between Heinrich events, use of an intermediate complexity climate model, coupled to an iceberg dynamic and thermodynamic model, shows that background levels of IRD most likely originate from western Europe, particularly the British–Irish Ice Sheet. Combining modelling with palaeoceanographic evidence supports reconstructions of a short‐lived, but substantial, Celtic and Irish Sea Ice Stream around 23 ka. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
29.
The Nyegga region, located at water depths of about 600–800 m on the NW European continental margin, contains more than 200 pockmarks. Recently collected TOPAS seismic profiles and EM1002 bathymetric records now provide high-resolution information on their seabed and shallow sub-seabed geological setting. The identified pockmarks are up to 15 m deep, between 30 m and 600 m across and reach a maximum area of ca. 315,000 m2. The pockmarks are sediment-empty features. They do not have any preferred direction of orientation and show large variations in their shape. The pockmarks are restricted to a <16.2 cal. ka old sediment unit. This unit comprises sandy mud and is characterised by sedimentation rates of ca. 1 mm/year. The pockmarks are localised over a thick late Plio-Pleistocene prograding sediment package and a polygonal faulted Miocene-Oligocene ooze-rich unit. The late Plio-Plistocene deposits host bottom simulating reflectors, indicative of gas hydrate-bearing sediments. Inspection of the newly collected high-resolution dataset, combined with previously analysed sediment cores and 2D multichannel seismic profiles, reveals that the Nyegga pockmark field does not show any strong relationship between seabed features, sub-seabed structures and the sedimentary setting. This suggests a more complex evolution history of the Nyegga pockmark field then previously thought.  相似文献   
30.
Tephra provides regional chronostratigraphical marker horizons that can link different climate archives with highly needed accuracy and precision. The results presented in this work exemplify, however, that the intermittent storage of tephra in ice sheets and during its subsequent iceberg transport, especially during glacial stages, constitutes a potential source of serious error for the application of tephrochronology to Nordic Seas and North Atlantic sediment archives. The peak shard concentration of the rhyolitic component of the North Atlantic Ash Zone II (NAAZ‐II) tephra complex, often used to correlate marine and ice core records in Marine Isotope Stage (MIS) 3, is shown to lag the eruption event by ca. 100–400 years in some North Atlantic and Norwegian Sea cores. While still allowing for a correlation of archives on millennial timescales, this time delay in deposition is a major obstacle when addressing the lead–lag relationship on short timescales (years to centuries). A precise and accurate determination of lead–lag relationships between archives recording different parts of the climate system is crucial in order to test hypotheses about the processes leading to abrupt climate change and to evaluate results from climate models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号