首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4533篇
  免费   135篇
  国内免费   238篇
测绘学   146篇
大气科学   490篇
地球物理   929篇
地质学   1386篇
海洋学   1258篇
天文学   463篇
综合类   93篇
自然地理   141篇
  2024年   2篇
  2023年   17篇
  2022年   26篇
  2021年   48篇
  2020年   86篇
  2019年   97篇
  2018年   198篇
  2017年   324篇
  2016年   256篇
  2015年   204篇
  2014年   293篇
  2013年   398篇
  2012年   216篇
  2011年   313篇
  2010年   276篇
  2009年   308篇
  2008年   222篇
  2007年   260篇
  2006年   217篇
  2005年   187篇
  2004年   127篇
  2003年   152篇
  2002年   140篇
  2001年   104篇
  2000年   75篇
  1999年   133篇
  1998年   56篇
  1997年   27篇
  1996年   34篇
  1995年   16篇
  1994年   8篇
  1993年   13篇
  1992年   12篇
  1991年   4篇
  1990年   10篇
  1989年   4篇
  1988年   6篇
  1987年   5篇
  1986年   9篇
  1985年   1篇
  1984年   4篇
  1982年   3篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1958年   3篇
排序方式: 共有4906条查询结果,搜索用时 343 毫秒
21.
Grain shape is a key factor affecting the mechanical properties of granular materials. However, grain shape quantification techniques to distinguish one granular material from another have not reached a stage of development for inclusion in modeling the behavior of granular materials. Part of the problem is the equipment of choice for grain shape measurement is the scanning electron microscopes. This is a relatively expensive and complex device. In this paper, we investigate a practical approach using light microscopy to quantify grain shape and to identify the key shape parameters that can distinguish grains. A light microscope was found to produce grain images with sufficient quality for the purpose of observing the grain shape profile. Several grain shape parameters were determined for eight different sands. We found Circularity, Roundness, Compactness, Sphericity, Aspect Ratio and ModRatio to be the key shape parameters that differentiate these sand grains.  相似文献   
22.
23.
The hydroelastic responses of a very-long floating structure (VLFS) placed behind a reverse T-shape freely floating breakwater with a built-in oscillating water column (OWC) chamber are analyzed in two dimensions. The Bernoulli–Euler beam equation is coupled with the equations of rigid and elastic motions of the breakwater and the VLFS. The interaction of waves between the floating rigid breakwater and the elastic VLFS is formulated in a consistent manner. It has been shown numerically that the structural deflections of the VLFS can be reduced significantly by a suitably designed reverse T-shape floating breakwater.  相似文献   
24.
The motion and the drift force of a floating OWC (oscillating water column) wave energy device in regular waves are studied taking account of the oscillating surface-pressure due to the pressure drop across the duct of the air chamber. The potential problem inside the chamber is formulated by making use of the Green integral equation associated with the Rankine-type Green function while the outer problem with the Kelvin-type Green function. The added mass, wave damping and excitation coefficients as well as the motion and drift force of the OWC device are calculated for various values of parameter related to the pressure drop.  相似文献   
25.
In this study, we investigate two internal wave generation methods in numerical modeling of time-dependent equations for water wave propagation, i.e., delta source function method and source term addition method, the latter of which has been called the line source method in literatures. We derive delta source functions for the Boussinesq-type equations and extended mild-slope equations. By applying the fractional step splitting method, we show that the delta source function method is equivalent to the source term addition method employing the energy velocity. This suggests that the energy velocity should be used rather than the phase velocity for the transport of incident wave energy in the source term addition method. Finally, the performance of the delta source function method is verified by accurately generating nonlinear cnoidal waves as well as linear waves for horizontally one-dimensional cases.  相似文献   
26.
We develop techniques of numerical wave generation in the time-dependent extended mild-slope equations of Suh et al. [1997. Time-dependent equations for wave propagation on rapidly varying topography. Coastal Engineering 32, 91–117] and Lee et al. [2003. Extended mild-slope equation for random waves. Coastal Engineering 48, 277–287] for random waves using a source function method. Numerical results for both regular and irregular waves in one and two horizontal dimensions show that the wave heights and the frequency spectra are properly reproduced. The waves that pass through the wave generation region do not cause any numerical disturbances, showing usefulness of the source function method in avoiding re-reflection problems at the offshore boundary.  相似文献   
27.
The architecture of macrofaunal burrows and the total area of the sediment-water interface created by biogenic structure were investigated in the Donggeomdo tidal flat on the west coast of Korea. Resin casting methods were applied to recover burrows of four dominant species, Macrophthalmus japonicus, Cleistostoma dilatatum, Perinereis aibuhitensis, and Periserrula leucophryna, and whole burrows within the casting area at three sites in different tidal levels.P. leucophryna excavated the largest burrow in terms of a surface area among them. In the case of whole burrow casting, the space occupied by the biogenic structure was extended into deeper and expanded more greatly at the higher tidal level. In the uppermost flat, the burrow wall surface area within sediment was more extensive than the sediment surface area. Increased oxygen supply through the extended interface could enhance the degradation rates of organic carbon and also change the pathways of degradation. Quantifying the relationship between the extended interface and mineralization rate and pathway requires more extensive study.  相似文献   
28.
This paper aims to investigate the basic interaction characteristics of side-by-side moored vessels both numerically and experimentally. A higher-order boundary element method (HOBEM) combined with generalized mode approach is applied to analysis of motion and drift force of side-by-side moored multiple vessels (LNG FPSO, LNGC and shuttle tankers). Model tests were carried out for the same floating bodies investigated in the numerical study in regular and irregular waves. Global and local motion responses and drift forces of three vessels are compared with those of calculations. Discussions is highlighted on applicability of numerical method to prediction of sophisticated multi-body interaction problem of which motion behavior is very important to analysis of mooring dynamics of deep sea floating bodies.  相似文献   
29.
This study investigates the mechanical characteristics of light-weighted soils (LWS) consisting of expanded polystyrene (EPS), dredged clays, and cement through both unconfined and triaxial compression tests. The mechanical characteristics of the compressive strength of LWS are analyzed with varying initial water contents of dredged clays, EPS ratio, cement ratio, and curing pressure. In the triaxial compression test, it is found that the compressive strength of LWS associated with EPS is independent on the effective confining pressure. When both EPS ratio is less than 2% and cement ratio is more than 2%, the compressive strength rapidly decreases after the ultimate value. This signifies that the compressive strength-strain behavior is quite similar to that of the cemented soil. The ground improved by LWS has the compressive strength of 200 kPa associated with the optimized EPS ratio of 3-4% and initial water content of 165-175%. The ultimate compressive strength under both triaxial and unconfined compression tests is almost constant for a cement ratio of up to 2%.  相似文献   
30.
A coupled wave–tide–surge model has been developed in this study in order to investigate the effect of the interactions among tides, storm surges, and wind waves. The coupled model is based on the synchronous dynamic coupling of a third-generation wave model, WAM cycle 4, and the two-dimensional tide–surge model. The surface stress, which is generated by interactions between wind and wave, is calculated by using the WAM model directly based on an analytical approximation of the results using the quasi-linear theory of wave generation. The changes in bottom friction are created by the interactions between waves and currents and calculated by using simplified bottom boundary layer model. In consequence, the combined wave–current-induced bottom velocity and effective bottom drag coefficient were increased in the shallow waters during the strong storm conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号