首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1292篇
  免费   43篇
  国内免费   14篇
测绘学   29篇
大气科学   95篇
地球物理   322篇
地质学   567篇
海洋学   106篇
天文学   133篇
综合类   5篇
自然地理   92篇
  2021年   9篇
  2020年   8篇
  2019年   8篇
  2018年   26篇
  2017年   28篇
  2016年   45篇
  2015年   29篇
  2014年   33篇
  2013年   76篇
  2012年   47篇
  2011年   70篇
  2010年   74篇
  2009年   77篇
  2008年   60篇
  2007年   62篇
  2006年   56篇
  2005年   81篇
  2004年   60篇
  2003年   42篇
  2002年   43篇
  2001年   35篇
  2000年   21篇
  1999年   28篇
  1998年   22篇
  1997年   10篇
  1996年   20篇
  1995年   15篇
  1994年   15篇
  1993年   9篇
  1992年   17篇
  1991年   11篇
  1990年   15篇
  1989年   9篇
  1988年   10篇
  1987年   10篇
  1986年   16篇
  1985年   15篇
  1984年   15篇
  1983年   10篇
  1982年   10篇
  1981年   15篇
  1980年   8篇
  1979年   11篇
  1978年   8篇
  1977年   10篇
  1976年   11篇
  1975年   4篇
  1974年   13篇
  1973年   4篇
  1953年   2篇
排序方式: 共有1349条查询结果,搜索用时 359 毫秒
21.
In the mid-fifteenth century, one of the largest eruptions of the last 10 000 years occurred in the Central New Hebrides arc, forming the Kuwae caldera (12x6 km). This eruption followed a late maar phase in the pre-caldera edifice, responsible for a series of alternating hydromagmatic deposits and airfall lapilli layers. Tuffs related to caldera formation ( 120 m of deposits on a composite section from the caldera wall) were emitted during two main ignimbritic phases associated with two additional hydromagmatic episodes. The lower hydromagmatic tuffs from the precaldera maar phase are mainly basaltic andesite in composition, but clasts show compositions ranging from 48 to 60% SiO2. The unwelded and welded ashflow deposits from the ignimbritic phases and the associated intermediate and upper hydromagmatic deposits also show a wide compositional range (60–73% SiO2), but are dominantly dacitic. This broad compositional range is thought to be due to crystal fractionation. The striking evolution from one eruptive style (hydromagmatic) to the other (magmatic with emission of a large volume of ignimbrites) which occurred either over the tuff series as a whole, or at the beginning of each ignimbritic phase, is the most impressive characteristic of the caldera-forming event. This strongly suggests triggering of the main eruptive phases by magma-water interaction. A three-step model of caldera formation is presented: (1) moderate hydromagmatic (sequences HD 1–4) and magmatic (fallout deposits) activity from a central vent, probably over a period of months or years, affected an area slightly wider than the present caldera. At the end of this stage, intense seismic activity and extrusion of differentiated magma outside the caldera area occurred; (2) unhomogenized dacite was released during a hydromagmatic episode (HD 5). This was immediately followed by two major pyroclastic flows (PFD 1 and 2). The vents spread and intense magma-water interaction at the beginning of this stage decreased rapidly as magma discharge increased. Subsequent collapse of the caldera probably commenced in the southeastern sector of the caldera; (3) dacitic welded tuffs were emplaced during a second main phase (WFD 1–5). At the beginning of this phase, magma-water interaction continued, producing typical hydromagmatic deposits (HD 6). Caldera collapse extended to the northern part of the caldera. Previous C14 dates and records of explosive volcanism in ice from the south Pole show that the climactic phase of this event occurred in 1452 A.D.  相似文献   
22.
We discuss the main mechanisms affecting the dynamical evolution of Near-Earth Asteroids (NEAs) by analyzing the results of three numerical integrations over 1 Myr of the NEA (4179) Toutatis. In the first integration the only perturbing planet is the Earth. So the evolution is dominated by close encounters and looks like a random walk in semimajor axis and a correlated random walk in eccentricity, keeping almost constant the perihelion distance and the Tisserand invariant. In the second integration Jupiter and Saturn are present instead of the Earth, and the 3/1 (mean motion) and v 6 (secular) resonances substantially change the eccentricity but not the semimajor axis. The third, most realistic, integration including all the three planets together shows a complex interplay of effects, with close encounters switching the orbit between different resonant states and no approximate conservation of the Tisserand invariant. This shows that simplified 3-body or 4-body models cannot be used to predict the typical evolution patterns and time scales of NEAs, and in particular that resonances provide some fast-track dynamical routes from low-eccentricity to very eccentric, planet-crossing orbits.On leave from the Department of Mathematics, University of Pisa, Via Buonarroti 2, 56127 Pisa, Italy, thanks to the G. Colombo fellowships of the European Space Agency.  相似文献   
23.
The history of variations in water level of Lake Constance, as reconstructed from sediment and pollen analysis of a sediment sequence from the archaeological site of Arbon-Bleiche 3, shows an abrupt rise in lake level dendrochronologically dated to 5375 yr ago (5320 yr relative to AD 1950). This event, paralleled by the destruction of the Neolithic village by fire, provoked the abandonment of this prehistoric lake-shore location established in the former shallow bay of Arbon-Bleiche, and was the last of a series of three episodes of successively higher lake level, the first occurring at 5600-5500 cal yr B.P. The dendrochronologically dated rise event was synchronous with an abrupt increase in atmospheric 14C. This supports the hypothesis of an abrupt climate change forced by varying solar activity. Moreover, the three successive episodes of higher lake level between 5600 and 5300 cal yr B.P. at Arbon-Bleiche 3 coincided with climatic cooling and/or changes in moisture conditions in various regions of both hemispheres. This period corresponds to the mid-Holocene climate transition (onset of the Neoglaciation) and suggests inter-hemispheric linkages for the climate variations recorded at Arbon-Bleiche 3. This mid-Holocene climate reversal may have resulted from complex interactions between changes in orbital forcing, ocean circulation and solar activity. Finally, despite different seasonal hydrological regimes, the similarities between lake-level records from Lake Constance and from Jurassian lakes over the mid-Holocene period point to time scale as a crucial factor in considering the possible impact of climate change on environments.  相似文献   
24.
Besides granites of the ilmenite series, in which the anisotropy of magnetic susceptibility (AMS) is mainly controlled by paramagnetic minerals, the AMS of igneous rocks is commonly interpreted as the result of the shape-preferred orientation of unequant ferromagnetic grains. In a few instances, the anisotropy due to the distribution of ferromagnetic grains, irrespective of their shape, has also been proposed as an important AMS source. Former analytical models that consider infinite geometry of identical and uniformly magnetized and coaxial particles confirm that shape fabric may be overcome by dipolar contributions if neighboring grains are close enough to each other to magnetically interact. On these bases we present and experimentally validate a two-grain macroscopic numerical model in which each grain carries its own magnetic anisotropy, volume, orientation and location in space. Compared with analytical predictions and available experiments, our results allow to list and quantify the factors that affect the effects of magnetic interactions. In particular, we discuss the effects of (i) the infinite geometry used in the analytical models, (ii) the intrinsic shape anisotropy of the grains, (iii) the relative orientation in space of the grains, and (iv) the spatial distribution of grains with a particular focus on the inter-grain distance distribution. Using documented case studies, these findings are summarized and discussed in the framework of the generalized total AMS tensor recently introduced by Cañon-Tapia (Cañon-Tapia, E., 2001. Factors affecting the relative importance of shape and distribution anisotropy in rocks: theory and experiments. Tectonophysics, 340, 117–131.). The most important result of our work is that analytical models far overestimate the role of magnetic interaction in rock fabric quantification. Considering natural rocks as an assemblage of interacting and non-interacting grains, and that the effects of interaction are reduced by (i) the finite geometry of the interacting clusters, (ii) the relative orientation between interacting grains, (iii) their heterogeneity in orientation, shape and bulk susceptibility, and (iv) their inter-distance distribution, we reconcile analytical models and experiments with real case studies that minimize the role of magnetic interaction onto the measured AMS. Limitations of our results are discussed and guidelines are provided for the use of AMS in geological interpretation of igneous rock fabrics where magnetic interactions are likely to occur.  相似文献   
25.
26.
27.
28.
29.
The Interior Basin of Gabon, created during the break-up between South America and Africa, displays thick Neoproterozoic to Aptian p.p. fluvio-lacustrine deposits overlain by Aptian to Albian marine facies. Rock–Eval analyses from outcrop and drillhole samples show high content in organic matter (up to 25%) related to types I and II. These intervals are encountered within Permian, Neocomian–Barremian as well as Aptian siliciclastic succession. They constitute fairly good to excellent potential petroleum source rocks, which are most probably at the origin of oil indices recognized both in drillholes and in surface.  相似文献   
30.
In the Dabieshan, the available models for exhumation of ultrahigh-pressure (UHP) rocks are poorly constrained by structural data. A comprehensive structural and kinematic map and a general cross-section of the Dabieshan including its foreland fold belt and the Northern Dabieshan Domain (Foziling and Luzenguang groups) are presented here. South Dabieshan consists from bottom to top of stacked allochtons: (1) an amphibolite facies gneissic unit, devoid of UHP rocks, interpreted here as the relative autochton; (2) an UHP allochton; (3) a HP rock unit (Susong group) mostly retrogressed into greenschist facies micaschists; (4) a weakly metamorphosed Proterozoic slate and sandstone unit; and (5) an unmetamorphosed Cambrian to Early Triassic sedimentary sequence unconformably covered by Jurassic sandstone. All these units exhibit a polyphase ductile deformation characterized by (i) a NW–SE lineation with a top-to-the-NW shearing, and (ii) a southward refolding of early ductile fabrics.

The Central Dabieshan is a 100-km scale migmatitic dome. Newly discovered eclogite xenoliths in a Cretaceous granitoid dated at 102 Ma by the U–Pb method on titanite demonstrate that migmatization post-dates HP–UHP metamorphism. Ductile faults formed in the subsolidus state coeval to migmatization allow us to characterize the structural pattern of doming. Along the dome margins, migmatite is gneissified under post-solidus conditions and mylonitic–ultramylonitic fabrics commonly develop. The north and west boundaries of the Central Dabieshan metamorphics, i.e. the Xiaotian–Mozitan and Macheng faults, are ductile normal faults formed before Late Jurassic–Early Cretaceous. A Cretaceous reworking is recorded by synkinematic plutons.

North of the Xiaotian–Mozitan fault, the North Dabieshan Domain consists of metasediments and orthogneiss (Foziling and Luzenguang groups) metamorphosed under greenschist to amphibolite facies which never experienced UHP metamorphism. A rare N–S-trending lineation with top-to-the-south shearing is dated at 260 Ma by the 40Ar/39Ar method on muscovite. This early structure related to compressional tectonics is reworked by top-to-the-north extensional shear bands.

The main deformation of the Dabieshan consists of a NW–SE-stretching lineation which wraps around the migmatitic dome but exhibits a consistently top-to-the-NW sense of shear. The Central Dabieshan is interpreted as an extensional migmatitic dome bounded by an arched, top-to-the-NW, detachment fault. This structure may account for a part of the UHP rock exhumation. However, the abundance of amphibolite restites in the Central Dabieshan migmatites and the scarcity of eclogites (found only in a few places) argue for an early stage of exhumation and retrogression of UHP rocks before migmatization. This event is coeval to the N–S extensional structures described in the North Dabieshan Domain. Recent radiometric dates suggest that early exhumation and subsequent migmatization occurred in Triassic–Liassic times. The main foliation is deformed by north-verging recumbent folds coeval to the south-verging folds of the South Dabieshan Domain. An intense Cretaceous magmatism accounts for thermal resetting of most of the 40Ar/39Ar dates.

A lithosphere-scale exhumation model, involving continental subduction, synconvergence extension with inversion of southward thrusts into NW-ward normal faults and crustal melting is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号