首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   2篇
测绘学   1篇
大气科学   1篇
地球物理   5篇
地质学   8篇
海洋学   3篇
综合类   1篇
自然地理   4篇
  2017年   1篇
  2014年   4篇
  2012年   3篇
  2009年   2篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2000年   1篇
  1997年   2篇
  1992年   1篇
排序方式: 共有23条查询结果,搜索用时 0 毫秒
21.
Reunion Island is characterized by rapid landscape evolution resulting from its cyclonic tropical climate. However, local active surface processes are not well understood. The relationships between climatic events, large scale landslides and torrential transport of sediment by the rivers remain unclear. The Remparts River is an appropriate area for studying such geomorphological processes, as it deeply incises the active Piton de la Fournaise volcano. In this study, different approaches are used to analyze the morphological evolution of the river from the sediment production areas to the outlet over the last 40 years. Recurrent events of huge mass wasting occur at Mahavel Cliff, upstream of one of the river tributaries, the most recent producing around 50×106 m3 of sediment in 1965. Combined analyses of the sequence of cyclonic events, major mass wasting events and aerial photography interpretation over the last 40 years led to the proposal of a functional model of river system responses to these events. The river system can be divided into three compartments, each affected by three classes of geomorphological events. The sedimentary response (erosion and/or aggradation) of each compartment to a triggering event, such as cyclonic rainfall and/or seasonal rise of water discharge, is controlled both by the magnitude of the climatic event and by the state of the compartment resulting from previous evolution. A set of five aerial photographs and a satellite image showing the evolution of the studied area during the last 40 years are examined in detail in the light of the functional model. Observations confirm a rapid and complex evolution of the river bed (erosion and aggradation), and provide information about the dynamics of the sediment transfer from the production areas to the ocean. Analysis of two distinct topographic datasets bracketing the last major cyclone Dina in 2002 allows the estimation of the river sediment budget resulting from this event. The net volume of aggraded sediments in the river bed is estimated at around 8×106 m3.With no major collapse event recorded at Mahavel Cliff, sediment transfer due to the flood associated with the 3-day cyclone Dina event is responsible for this significant increase in river bed sediment volume. This quantification shows that several million cubic meters of sediment may take only a few years to spread over more than 5 km downstream. The river bed has now reached its highest elevation since the 1965 landslide, with potential consequences for natural hazards in the area of the outlet at the city of Saint-Joseph.  相似文献   
22.
本文介绍了利用我国丰富的地震资料,应用地震活动度定量描述地震活动性的方法,通过S值空间扫描计算,绘制的我国地震活动度等值线图。为定量表达地震活动的空间分布提供了一种新方法。  相似文献   
23.
The most commonly used marker for the investigation of gas-hydrates is the bottom simulating reflector (BSR), which is caused by gas-hydrate laden sediment underlain by either brine or gas-saturated sediment. A BSR has been identified by seismic experiment in the Kerala-Konkan Basin of the western continental margin of India. Here we perform AVA modeling of seismic reflection data from a BSR to investigate the seismic velocities for quantitative assessment of gas-hydrates and to understand the origin of the BSR. The result reveals a P-wave velocity of 2.245 km/s and an S-wave velocity of 0.895 km/s for the sediments above the BSR. This corresponds to a Poisson ratio of 0.406 and hydrates saturation of ∼30% in the study area. The comparison of estimated P-wave velocity (1.77 km/s) above the hydrates-bearing sediment to that (1.78 km/s) below the BSR implies that the origin of the BSR is mainly due to gas-hydrates, as the presence (even in small quantities) of free-gas reduces the P-wave velocity considerably.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号