首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   4篇
测绘学   7篇
大气科学   6篇
地球物理   42篇
地质学   46篇
海洋学   46篇
天文学   25篇
自然地理   14篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   7篇
  2014年   11篇
  2013年   4篇
  2012年   5篇
  2011年   5篇
  2010年   4篇
  2009年   9篇
  2008年   7篇
  2007年   13篇
  2006年   7篇
  2005年   8篇
  2004年   15篇
  2003年   8篇
  2002年   1篇
  2001年   4篇
  2000年   6篇
  1999年   1篇
  1998年   3篇
  1996年   3篇
  1995年   5篇
  1994年   2篇
  1992年   1篇
  1991年   3篇
  1990年   4篇
  1989年   1篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1984年   5篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1962年   2篇
  1955年   1篇
排序方式: 共有186条查询结果,搜索用时 312 毫秒
21.
22.
A survey of local governments participating in two urban climate change programs is presented to determine the mechanisms used to reach emissions reduction goals and the motivations for participation. Results support previous research that shows a preference for policies that rely on changes in individual behavior, while also providing new insights into how mitigation responsibilities are distributed among the public and private sector and the relative importance of scientific consensus, economic incentives, and federal inaction on local government justification for climate-related policies. The article concludes with a discussion of urban climate governance as part of a wider system of neoliberal climate governance.  相似文献   
23.
One of the most significant challenges faced by hydrogeologic modelers is the disparity between the spatial and temporal scales at which fundamental flow, transport, and reaction processes can best be understood and quantified (e.g., microscopic to pore scales and seconds to days) and at which practical model predictions are needed (e.g., plume to aquifer scales and years to centuries). While the multiscale nature of hydrogeologic problems is widely recognized, technological limitations in computation and characterization restrict most practical modeling efforts to fairly coarse representations of heterogeneous properties and processes. For some modern problems, the necessary level of simplification is such that model parameters may lose physical meaning and model predictive ability is questionable for any conditions other than those to which the model was calibrated. Recently, there has been broad interest across a wide range of scientific and engineering disciplines in simulation approaches that more rigorously account for the multiscale nature of systems of interest. In this article, we review a number of such approaches and propose a classification scheme for defining different types of multiscale simulation methods and those classes of problems to which they are most applicable. Our classification scheme is presented in terms of a flowchart (Multiscale Analysis Platform), and defines several different motifs of multiscale simulation. Within each motif, the member methods are reviewed and example applications are discussed. We focus attention on hybrid multiscale methods, in which two or more models with different physics described at fundamentally different scales are directly coupled within a single simulation. Very recently these methods have begun to be applied to groundwater flow and transport simulations, and we discuss these applications in the context of our classification scheme. As computational and characterization capabilities continue to improve, we envision that hybrid multiscale modeling will become more common and also a viable alternative to conventional single‐scale models in the near future.  相似文献   
24.
Flow within the interfacial layer of gravel‐bed rivers is poorly understood, but this zone is important because the hydraulics here transport sediment, generate flow structures and interact with benthic organisms. We hypothesized that different gravel‐bed microtopographies generate measurable differences in hydraulic characteristics within the interfacial layer. This was tested using a high density of spatially and vertically distributed, velocity time series measured in the interfacial layers above three surfaces of contrasting microtopography. These surfaces had natural water‐worked textures, captured in the field using a casting procedure. Analysis was repeated for three discharges, with Reynolds numbers between 165000 and 287000, to evaluate whether discharge affected the impact of microtopography on interfacial flows. Relative submergence varied over a small range (3.5 to 8.1) characteristic of upland gravel‐bed rivers. Between‐surface differences in the median and variance of several time‐averaged and turbulent flow parameters were tested using non‐parametric statistics. Across all discharges, microtopographic differences did not affect spatially averaged (median) values of streamwise velocity, but were associated with significant differences in its spatial variance, and did affect spatially averaged (median) turbulent kinetic energy. Sweep and ejection events dominated the interfacial region above all surfaces at all flows, but there was a microtopographic effect, with Q2 and Q4 events less dominant and structures less persistent above the surface with the widest relief distribution, especially at the highest Reynolds number flow. Results are broadly consistent with earlier work, although this analysis is unique because of the focus on interfacial hydraulics, spatially averaged ‘patch scale’ metrics and a statistical approach to data analysis. An important implication is that observable differences in microtopography do not necessarily produce differences in interfacial hydraulics. An important observation is that appropriate roughness parameterizations for gravel‐bed rivers remain elusive, partly because the relative contributions to flow resistance of different aspects of bed microtopography are poorly constrained. © 2014 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   
25.
The changing form of developing alluvial river bars has rarely been studied in the field, especially in the context of the fixed, compound, mainly alternate gravel bars that are the major morphological feature of the wandering style. Century scale patterns of three‐dimensional growth and development, and the consequent scaling relations of such bars, are examined along the gravel‐bed reach of lower Fraser River, British Columbia, Canada. A retrospective view based on maps and aerial photographs obtained through the twentieth century shows that individual bars have a life history of about 100 years, except in certain, protected positions. A newly formed gravel bar quickly assumes its ultimate thickness and relatively quickly approaches its equilibrium length. Growth continues mainly by lateral accretion of unit bars, consistent with the lateral style of instability of the river. Bar growth is therefore allometric. Mature bars approach equilibrium dimensions and volume that scale with the overall size of the channel. Accordingly, the bars conform with several published criteria for the ultimate dimensions of alternate barforms. Sand bars, observed farther downstream, have notably different morphology. Fraser River presents a typical wandering channel planform, exhibiting elements of both meandered and low‐order braided channels. Hydraulic criteria to which the Fraser bars conform illustrate why this planform develops and persists. The modest rate of bed material transfer along the channel – typical of the wandering type – determines a century‐length time scale for bar development. This time scale is consistent with estimates that have been made for change of the macroform elements that determine the overall geometry of alluvial channels. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
26.
27.
The Taiwanese‐American Occultation Survey (TAOS) seeks to determine the number and size spectrum for small (∼3 km) bodies in the Kuiper Belt. This will be accomplished by searching for the brief occultations of bright stars (R ∼ 14) by these objects. We have designed and built a special purpose photometric monitoring system for this purpose. TAOS comprises four 50 cm telescopes, each equipped with a 2048 × 2048 pixel CCD camera, in a compact array located in the central highlands of Taiwan. TAOS will monitor up to 2 000 stars at 5 Hz. The system went into scientific operation in the autumn of 2005. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
28.
29.
Delta channels are important landforms at the interface of sediment transfer from terrestrial to oceanic realms and affect large, and often vulnerable, human populations. Understanding these dynamics is pressing because delta processes are sensitive to climate change and human activity via adjustments in, for example, mean sea level and water/sediment regimes. Data collected over a 40-year period along a 110-km distributary channel of the Yellow River Delta offer an ideal opportunity to investigate morphological responses to changing water and sediment regimes and intensive human activity. Complementary data from the delta front provide an opportunity to explore the interaction between delta channel geomorphology and delta-front erosion–accretion patterns. Cross-section dimensions and shape, longitudinal gradation and a sediment budget are used to quantify spatial and temporal morphological change along the Qingshuigou channel. Distinctive periods of channel change are identified, and analysis provides a detailed understanding of the temporal and spatial adjustments of the channel to specific human interventions, including two artificial channel diversions and changes in water and sediment supply driven by river management, and downstream delta-front development. Adjustments to the diversions included a short-lived period of erosion upstream and significant erosion in the newly activated channel, which progressed downstream. Channel geomorphology widened and deepened during periods when management increased water yield and decreased sediment supply, and narrowed and shallowed during periods when management reduced water yield and the sediment load. Changes along the channel are driven by both upstream and downstream forcing. Finally, there is some evidence that changing delta-front erosion–accretion patterns played an important role in the geomorphic evolution of the deltaic channel; an area that requires further investigation. © 2020 John Wiley & Sons, Ltd.  相似文献   
30.
Caddisfly (Trichoptera) larvae are an abundant and widespread aquatic insect group characterized by the construction of silk structures, including nets and cases. Case-building caddisfly have the potential to modify the sorting and mobility of sand and fine gravel via: (1) case construction, resulting in altered sediment properties; (2) transporting sediment incorporated into cases over the river bed; and (3) changing the structure of river beds via burrowing activity. To investigate these mechanisms, it is necessary to understand the mass, size distribution and spatial variability of sediment use by case-building caddisfly larvae. We quantified the mineral sediment used by individuals and communities of case-building caddisfly in 27 samples, from three sites on a gravel-bed stream. The mass and size distribution of sediment in individual cases varied between taxa (mass = 0.001–0.83 g, D50 = 0.17–4 mm). The mean mass of sediment used by the caddisfly community was 38 g m−2 and varied locally. Sediment use was predominantly coarse sand (D50 = 1 mm). 64% of sediment use was attributable to Agapetus fuscipes (Glossosomatidae). Due to within-species variability in case mass, the abundance of most taxa, including A. fuscipes, was only weakly associated with the mass of sediment used by this species, at the river scale. Whilst the caddisfly community used a small percentage of the total sediment available (average 2.99% of the 1–1.4 mm size fraction), A. fuscipes used more fine sediment in their cases at sites where it was more available. Despite variability in local habitat, all sites supported diverse case-building caddisfly communities utilizing mineral sediment. Consequently, geomorphological effects of case-building caddisfly are potentially widespread. The results provide novel insights into the specific grain sizes and quantities of fine sediment used by caddisfly larvae, which represents an important step towards understanding their zoogeomorphic activities. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号