首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
  国内免费   1篇
地球物理   2篇
地质学   9篇
海洋学   21篇
自然地理   4篇
  2018年   1篇
  2015年   1篇
  2012年   1篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   5篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1992年   1篇
  1990年   2篇
  1986年   6篇
  1977年   1篇
  1973年   2篇
排序方式: 共有36条查询结果,搜索用时 234 毫秒
21.
Located between the Okinawa trough (OT) backarc basin and the collisional zone in Taiwan, the southernmost Ryukyu subduction zone is investigated. This area, including the southwestern portions of the OT and Ryukyu island arc (RA) and located west of 123.5° E, is named the Taiwan-Ryukyu fault zone (TRFZ). West of 123.5° E, the OT displays NNW-SSE structural trends which are different in direction from the ENE-WSW trending pattern of the rest of the OT. Using joint analysis of bathymetric, magnetic, gravity and earthquake data, three major discontinuities, that we interpret as right-lateral strike-slip faults (Faults A, B and C), have been identified. These faults could represent major decouplings in the southern portion of the Ryukyu subduction zone: each decoupling results in a decrease of the horizontal stress on the portion of the RA located on the eastern side of the corresponding fault, which allows the extension of the eastern side of OT to proceed more freely.We demonstrate that the 30° clockwise bending of the southwestern RA and the consecutive faulting in the TRFZ are mainly due to the collision of the Luzon arc with the former RA. After the formation of Fault C, the counterclockwise rotated portion of the ancient RA located west of the Luzon arc was more parallel to the Luzon arc. This configuration should have increased the contact surface and friction between the Luzon arc and the ancient RA, which could have reduced the northward subduction of the Luzon are. Thus, the westward component of the compressive stress from the collision of the Luzon arc should become predominant in the collisional system resulting in the uplift of Taiwan. Presently, because the most active collision of the Luzon arc has migrated to the central Taiwan (at about 23° N; 121.2° E), the southwestern OT has resumed its extension. In addition, the later resistent subduction of the Gagua ridge could have reactivated the pre-existing faults A and B at 1 M.y. ago and present, respectively. From 9 to 4 M.y., a large portion of the Gagua ridge probably collided with the southwestern RA. Because of its large buoyancy, this portion of the ridge resisted to subduct beneath the Okinawa platelet. As a result, we suggest that a large exotic terrane, named the Gagua terrane, was emplaced on the inner side of the present Ryukyu trench. Since that period, the southwestern portion of the Ryukyu trench was segmented into two parallel branches separated by the Gagua ridge: the eastern segment propagated westward along the trench axis while the western segment of the trench retreated along the trench axis.  相似文献   
22.
23.
24.
How was Taiwan created?   总被引:4,自引:0,他引:4  
Since the beginning of formation of proto-Taiwan during late Miocene (9 Ma), the subducting Philippine (PH) Sea plate moved continuously through time in the N307° direction at a 5.6 cm/year velocity with respect to Eurasia (EU), tearing the Eurasian plate. Strain states within the EU crust are different on each side of the western PH Sea plate boundary (extensional in the Okinawa Trough and northeastern Taiwan versus contractional for the rest of Taiwan Island). The B feature corresponds to the boundary between the continental and oceanic parts of the subducting Eurasian plate and lies in the prolongation of the ocean–continent boundary of the northern South China Sea. Strain rates in the Philippines to northern Taiwan accretionary prism are similar on each side of B (contractional), though with different strain directions, perhaps in relation with the change of nature of the EU slab across B. Consequently, in the process of Taiwan mountain building, the deformation style was probably not changing continuously from the Manila to the Ryukyu subduction zones. The Luzon intra-oceanic arc only formed south of B, above the subducting Eurasian oceanic lithosphere. North of B, the Luzon arc collided with EU simultaneously with the eastward subduction of a portion of EU continental lithosphere beneath the Luzon arc. In its northern portion, the lower part of the Luzon arc was subducting beneath Eurasia while the upper part accreted against the Ryukyu forearc. Among the consequences of such a simple geodynamic model: (i) The notion of continuum from subduction to collision might be questioned. (ii) Traces of the Miocene volcanic arc were never found in the southwestern Ryukyu arc. We suggest that the portion of EU continental lithosphere, which has subducted beneath the Coastal Range, might include the Miocene Ryukyu arc volcanoes formed west of 126°E longitude and which are missing today. (iii) The 150-km-wide oceanic domain located south of B between the Luzon arc and the Manila trench, above the subducting oceanic EU plate (South China Sea) was progressively incorporated into the EU plate north of B.  相似文献   
25.
26.
27.
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号