首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   545篇
  免费   105篇
  国内免费   180篇
测绘学   79篇
大气科学   309篇
地球物理   60篇
地质学   161篇
海洋学   65篇
天文学   6篇
综合类   52篇
自然地理   98篇
  2024年   6篇
  2023年   10篇
  2022年   19篇
  2021年   38篇
  2020年   34篇
  2019年   32篇
  2018年   33篇
  2017年   24篇
  2016年   24篇
  2015年   32篇
  2014年   38篇
  2013年   52篇
  2012年   35篇
  2011年   47篇
  2010年   40篇
  2009年   40篇
  2008年   29篇
  2007年   36篇
  2006年   33篇
  2005年   23篇
  2004年   28篇
  2003年   12篇
  2002年   15篇
  2001年   22篇
  2000年   16篇
  1999年   14篇
  1998年   11篇
  1997年   7篇
  1996年   14篇
  1995年   14篇
  1994年   10篇
  1993年   9篇
  1992年   11篇
  1991年   5篇
  1990年   2篇
  1989年   6篇
  1988年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有830条查询结果,搜索用时 23 毫秒
21.
The Tertiary Mineoka ophiolite occurs in a fault zone at the intersection of the Honshu and Izu forearcs in central Japan and displays structural evidence for three major phases of deformation: normal and oblique-slip faults and hydrothermal veins formed during the seafloor spreading evolution of the ophiolite at a ridge-transform fault intersection. These structures may represent repeated changes in differential stress and pore-fluid pressures during their formation. The second series of deformation is characterized by oblique thrust faults with Riedel shears and no significant mineral veining, and is interpreted to have resulted from transpressional dextral faulting during the obduction of the ophiolite through oblique convergence and tectonic accretion. This deformation occurred at the NW corner of a TTT-type (trench–trench–trench) triple junction in the NW Pacific rim before the middle Miocene. The third series of deformation of the ophiolite is marked by contractional and oblique shear zones, Riedel shears, and thrust faults that crosscut and offset earlier structures, and that give the Mineoka fault zone its lenticular (phacoidal) fabric at all scales. This deformation phase was associated with the establishment and the southward migration of the TTT Boso triple junction and with the kinematics of oblique subduction and forearc sliver fault development. The composite Mineoka ophiolite hence displays rocks and structures that evolved during its complex geodynamic history involving seafloor spreading, tectonic accretion, and triple junction evolution in the NW Pacific Rim.  相似文献   
22.
23.
Seismic reflection and refraction data were collected west of New Zealand's South Island parallel to the Pacific–Australian Plate boundary. The obliquely convergent plate boundary is marked at the surface by the Alpine Fault, which juxtaposes continental crust of each plate. The data are used to study the crustal and uppermost mantle structure and provide a link between other seismic transects which cross the plate boundary. Arrival times of wide-angle reflected and refracted events from 13 recording stations are used to construct a 380-km long crustal velocity model. The model shows that, beneath a 2–4-km thick sedimentary veneer, the crust consists of two layers. The upper layer velocities increase from 5.4–5.9 km/s at the top of the layer to 6.3 km/s at the base of the layer. The base of the layer is mainly about 20 km deep but deepens to 25 km at its southern end. The lower layer velocities range from 6.3 to 7.1 km/s, and are commonly around 6.5 km/s at the top of the layer and 6.7 km/s at the base. Beneath the lower layer, the model has velocities of 8.2–8.5 km/s, typical of mantle material. The Mohorovicic discontinuity (Moho) therefore lies at the base of the second layer. It is at a depth of around 30 km but shallows over the south–central third of the profile to about 26 km, possibly associated with a southwest dipping detachment fault. The high, variable sub-Moho velocities of 8.2 km/s to 8.5 km/s are inferred to result from strong upper mantle anisotropy. Multichannel seismic reflection data cover about 220 km of the southern part of the modelled section. Beneath the well-layered Oligocene to recent sedimentary section, the crustal section is broadly divided into two zones, which correspond to the two layers of the velocity model. The upper layer (down to about 7–9 s two-way travel time) has few reflections. The lower layer (down to about 11 s two-way time) contains many strong, subparallel reflections. The base of this reflective zone is the Moho. Bi-vergent dipping reflective zones within this lower crustal layer are interpreted as interwedging structures common in areas of crustal shortening. These structures and the strong northeast dipping reflections beneath the Moho towards the north end of the (MCS) line are interpreted to be caused by Paleozoic north-dipping subduction and terrane collision at the margin of Gondwana. Deeper mantle reflections with variable dip are observed on the wide-angle gathers. Travel-time modelling of these events by ray-tracing through the established velocity model indicates depths of 50–110 km for these events. They show little coherence in dip and may be caused side-swipe from the adjacent crustal root under the Southern Alps or from the upper mantle density anomalies inferred from teleseismic data under the crustal root.  相似文献   
24.
This paper presents the neotectonic study of Santa Clara and Puná Islands sited in the Gulf of Guayaquil eastern part. Both islands are located on the south-western segment of the fault zone bounding to the east the North Andean Block. Fault motion and morphostructural analysis were carried out from Pleistocene age terrain. A two step deformation characterises the South Puná tectonics. The first step involves the Zambapala Cordillera uplift that post-dates Pleistocene sediments and pre-dates a marine terrace correlated with the M.I.S. 11 or 13 (440–550 ka). The second step is the formation of a pull-apart that shows evidence of 2.9 km dextral offset since the M.I.S. 11 or 13, giving an offset mean rate of 5.3 to 6.6 mm/yr. This rate is higher than the one calculated on the Pallatanga Fault northeast of the study area, in the Western Andean Cordillera, suggesting that deformation is split in different fault segments from the Gulf of Guayaquil to the continent. The Zambapala Cordillera uplift and transpression deformation requires a compressive event that may have been induced by the subduction process during the early Pleistocene.  相似文献   
25.
Field structural and SPOT image analyses document the kinematic framework enhancing transfer of strike-slip partitioned motion from along the backstop to the interior of the Zagros fold-and-thrust belt in a context of plate convergence slight obliquity. Transfer occurs by slip on the north-trending right-lateral Kazerun Fault System (KFS) that connects to the Main Recent Fault, a major northwest-trending dextral fault partitioning oblique convergence at the rear of the belt. The KFS formed by three fault zones ended by bent orogen-parallel thrusts allows slip from along the Main Recent Fault to become distributed by transfer to longitudinal thrusts and folds. To cite this article: C. Authemayou et al., C. R. Geoscience 337 (2005).  相似文献   
26.
为探讨系统偏差最优估计策略,利用IGS提供的GPS、BDS、GLONASS和Galileo 四系统的观测数据以及GFZ提供的精密卫星钟差和精密轨道产品,将系统偏差(ISB)按照高斯白噪声、20 min、30 min、1 h、2 h分段常数进行单天静态解,分别获得E、N、U方向上的坐标偏差,分析不同系统偏差求解策略下多系统融合PPP的收敛时间和定位精度。结果表明,在多系统融合静态PPP中,从观测模型强度与定位结果稳定性和可靠性角度综合考虑,对ISB采用20 min分段常数估计策略是最优的,静态PPP收敛时间在30 min左右,收敛后的定位精度E方向优于2 cm、N方向优于1 cm、U方向优于5 cm。  相似文献   
27.
Based on 25-year(1987–2011) tropical cyclone(TC) best track data, a statistical study was carried out to investigate the basic features of upper-tropospheric TC–environment interactions over the western North Pacific. Interaction was defined as the absolute value of eddy momentum flux convergence(EFC) exceeding 10 m s~(-1)d~(-1). Based on this definition, it was found that 18% of all six-hourly TC samples experienced interaction. Extreme interaction cases showed that EFC can reach~120 m s~(-1)d~(-1) during the extratropical-cyclone(EC) stage, an order of magnitude larger than reported in previous studies.Composite analysis showed that positive interactions are characterized by a double-jet flow pattern, rather than the traditional trough pattern, because it is the jets that bring in large EFC from the upper-level environment to the TC center. The role of the outflow jet is also enhanced by relatively low inertial stability, as compared to the inflow jet. Among several environmental factors, it was found that extremely large EFC is usually accompanied by high inertial stability, low SST and strong vertical wind shear(VWS). Thus, the positive effect of EFC is cancelled by their negative effects. Only those samples during the EC stage, whose intensities were less dependent on VWS and the underlying SST, could survive in extremely large EFC environments, or even re-intensify. For classical TCs(not in the EC stage), it was found that environments with a moderate EFC value generally below ~25 m s~(-1)d~(-1) are more favorable for a TC's intensification than those with extremely large EFC.  相似文献   
28.
浙江盛夏一次强对流天气的特征及其成因分析   总被引:4,自引:2,他引:2  
沈杭锋  张红蕾  高天赤  勾亚彬  陈勇明 《气象》2016,42(9):1105-1113
利用常规气象观测资料、区域自动站加密观测资料、GFS 0.5°×0.5°逐6 h分析场数据,以及多普勒雷达、风廓线、微波辐射计探测资料,对2014年7月26日浙江盛夏一次强对流天气过程的特征及其成因进行了诊断分析,结果表明:此次过程发生在副热带高压边缘,由于高空槽东移过程中带来了弱冷空气的渗透,并有大量不稳定能量积聚,形成了午后"上干冷、下暖湿"这样有利于强对流发生的不稳定层结条件和环境背景场。当低层925 hPa的中尺度辐合线和对流层中层700 hPa的垂直上升运动区相重合时,中尺度辐合线附近在未来6 h内产生了强对流,这对强对流的发生发展具有一定的预报指示意义。宁波中尺度辐合线是由偏南风和东北风辐合而成,同时受沿海和喇叭口地形影响,该辐合线早已存在,之后触发了宁波地区的强对流天气。杭州中尺度辐合线是由于宁波雷暴的地面出流增强了偏东风气流,从而加强了偏东风与环境东北风的辐合,导致了杭州中尺度辐合线的形成,随后在辐合线附近出现了剧烈的对流天气。  相似文献   
29.
华南暖区暴雨研究进展   总被引:23,自引:8,他引:15       下载免费PDF全文
华南前汛期暴雨预报一直是我国大气科学界的一个研究热点,特别是发生在锋前的暖区暴雨,由于其天气尺度斜压性强迫不明显,环境大气水汽含量丰富,热动力不稳定性强,边界层触发机制复杂,以及特殊的地形和海陆热力差异的外强迫作用,导致暴雨突发性强,地域性特征显著,也是困扰预报业务人员的难点问题。目前我国预报业务中使用的全球数值预报模式对暖区暴雨的预报能力十分有限,高分辨率中尺度数值模式的预报效果也不尽人意。该文回顾了近40年华南前汛期暴雨大部分研究成果,针对华南暖区暴雨的提出及典型背景场、暖区暴雨与低空急流的关系、暖区中尺度对流系统的形成及传播、暖区暴雨触发机制等独特的天气动力学特征进行了系统梳理与分析,并依据前人研究成果及中央气象台预报实践经验,总结提炼了3类华南暖区暴雨类型——边界层辐合线型、偏南风风速辐合型,以及强西南急流型的天气系统配置及触发因子。最后提出针对华南暖区暴雨需要进一步研究的科学问题。  相似文献   
30.
An analysis of the kinetic energy budget during a case of interaction between middle latitude and extratropical cyclones has been made in this work. Horizontal flux convergence constitutes a major energy sink. Generation of kinetic energy via cross-contour flow is a persistent source throughout the growth and decay periods. Dissipation of kinetic energy from subgrid to grid scales is an important source during the pre-storm period; it acts as a sink during the growth and decay periods. The major contribution to kinetic energy comes from a persistent upper tropospheric jet stream activity throughout the period of the cyclone development. The characteristics of moisture-flux components (divergent and rotational) along with precipitable water content for different tropospheric layers throughout the life cycle of our cyclone are also studied in this work. It is found that most of required humidity for our cyclone are initiated from Arabian Sea and then to some extent are reinforced over Gulf of Aden and east of central Africa and then by passing over Red sea enter to the south and south east of Mediterranean Sea. The rotational component of the moisture transport brings moisture from two regions; the first which is considered the main region is the Indian Ocean, Arabian Sea, Gulf of Aden and north east of Sudan. The second source region is the Atlantic and Mediterranean Sea. In the middle troposphere, the primary moisture source is found over central Africa, which in turn is traced to the Atlantic Ocean, the Indian Ocean, and the Arabian Sea. The upper-level moisture fluxes are weak and play a minor role over the area of interaction between two cyclones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号