首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   14篇
  国内免费   28篇
测绘学   1篇
大气科学   90篇
地球物理   4篇
地质学   13篇
综合类   1篇
自然地理   122篇
  2024年   2篇
  2023年   1篇
  2021年   3篇
  2019年   3篇
  2018年   2篇
  2017年   5篇
  2016年   5篇
  2015年   3篇
  2014年   11篇
  2013年   8篇
  2012年   18篇
  2011年   8篇
  2010年   5篇
  2009年   7篇
  2008年   12篇
  2007年   19篇
  2006年   17篇
  2005年   14篇
  2004年   23篇
  2003年   22篇
  2002年   10篇
  2001年   12篇
  2000年   6篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1991年   2篇
排序方式: 共有231条查询结果,搜索用时 31 毫秒
21.
沙尘暴电效应的实验观测研究   总被引:7,自引:0,他引:7       下载免费PDF全文
利用国内大型风沙物理风洞实验模拟沙尘暴电现象,研究风沙起电机理,结果表 明,不同风速下不同沙粒会产生不同极性的电场强度和电位效应,风沙电随风速增大而增强 ,且随沙粒度增大而减小. 在沙漠区的16m,8m,4m和1m高度上观测到27次不同沙尘暴天气 过程的电场和风速随时间变化. 结果表明, 在晴天4个高度上的电场均为小正电场值,电场 随高度降低而减小,最大电场强度在5kV/m以下,日风速变化对各层电场起伏没有较大影响 . 有沙尘天气,各高度上的电场强度随风速变化而变化. 16m高度上电场均为负值,平均值 为 -20kV/m;中层8m 电场一般为较高正电场值,达到10~40kV/m,与16m高度上电场呈反相 关;下层1m 电场值变化一般很小,在1kV/m以下. 在强沙尘暴天气4个高度上的电场均为负 电值,电场值随高度降低而减小,16m高度上最大平均电场强度达到-200kV/m以上,瞬时值 超过 -2500kV/m,与晴天电场矢量相反.  相似文献   
22.
During the course of a major sandstorm from April 17 to April 23, 2008 in the Taklimakan Desert, data pertaining to the mass concentrations of different-sized atmospheric particulate matter were observed continuously with Grimm 1.108, Thermo RP 1400a, TSP, and CAWS-600 instruments. The results showed that: (1) during the entire sandstorm process there were some differences between the daily mean particle concentration peaks and the hourly mean particle concentration peaks because the actual sandstorm lasted for only about 4 hr, whereas more particles were accumulated in the floating dust days before and after the actual sandstorm; (2) the intensity of the sandstorm was enhanced with the increase of wind speed, and this was related to the peak mass concentrations of atmospheric particulate matter; the wind speed directly affected the concentration of atmospheric particulate matter: the higher the wind speed, the higher the mass concentration (>0.23 μm was 39,496.5 μg/m3, and >20.0 μm was 5,390.7 μg/m3); (3) the concentration changes of PM10 and TSP were also related to the course and intensity of the sandstorm; and (4) the mass concentration of atmospheric particulate matter had the following sequence during the dust weather: clear day < floating dust < floating and blowing dust < sandstorm. Temperature, relative humidity, and barometric pressure are important factors affecting the strength of storms, which could also indirectly affect the concentration change of atmospheric particulate matter.  相似文献   
23.
内蒙古一次强沙尘暴过程综合观测分析   总被引:1,自引:0,他引:1  
利用高空、地面常规观测资料和内蒙古沙尘暴监测站的沙尘暴器测资料,对2010年3月19~20日一次强沙尘暴天气过程进行了综合观测分析.结果表明:本次沙尘暴发生前,大气层结稳定并不利于对流的发展.但在700 hPa至500 hPa的强冷平流与850 hPa以下层次的平流差异有利于温度垂直递减率增大,强冷平流的作用使其中心以下层次形成热力不稳定层结,是沙尘暴发生的有利层结条件.当干对流风暴发生并形成沙尘暴天气时,不稳定能量释放,使该层大气趋于中性层结即混合层,混合层可能是其间的一个平衡态.对流层中低层冷平流的强度、位置和层次,一定程度上影响着混合层的厚度和沙尘暴的强度.过程中混合层以下气层温度下降的比较快,加之沙尘暴顶层短波辐射有增温效果,在混合层顶(约500 hPa处)出现逆温盖.强冷空气活动是引发沙尘暴天气的主要原因,沙尘暴天气的发生伴随着地面剧烈降温,相对湿度骤降,气压涌升,地面风速直接影响沙尘暴强度.可吸入颗粒物(PM10)浓度能更加精细的反映和描述沙尘暴强度的变化.粒子散射系数的变化趋势和PM10浓度的变化趋势非常一致,沙尘暴阶段,散射系数基本在1000Mm-1以上,达到强沙尘暴强度阶段,散射系数基本在2000Mm-1以上.  相似文献   
24.
利用高空、地面常规观测资料和NCEP再分析资料,针对2015年2月21日内蒙古中部阴山北麓地区暴风雪转强沙尘暴天气,进行了对比分析。结果表明:该次天气过程受强冷空气影响,由高空蒙古冷涡迅速发展加强产生。地面冷锋形成降雪,锋区风力较大,形成了暴风雪,随后受副冷锋影响,风力明显增强,产生沙尘暴天气。暴风雪与沙尘暴差异表现在:(1)冷涡、冷锋是主要影响系统,但天气系统影响部位不同,暴风雪多发生在锋区及暖区中,沙尘暴多发生在锋区后部的强冷平流控制区中。(2)水汽条件差异明显,暴风雪相对湿度需要大于70%,沙尘暴相对湿度小于30%。(3)大气层结需求不同,暴风雪对不稳定层结要求不高,沙尘暴对不稳定层结和深厚的混合层有较高的要求。(4)暴风雪发生时气温骤降,沙尘暴发生时温度缓慢持续下降。  相似文献   
25.
2011年春季中国北方沙尘天气过程及其成因   总被引:2,自引:1,他引:1  
2011年春季,中国共出现了7次沙尘天气过程,其中沙尘暴4次,强沙尘暴2次,沙尘天气频次总体偏少、强沙尘暴偏多,影响范围较广。通过对2010/2011年冬季及2011年春季天气气候特征的分析表明:①2010/2011年冬季,冷空气偏强,气温偏低,有利于土壤冻结,同时新疆大部、内蒙古西部及东北部分地区降水偏少,使得前期地面植被状况偏差,进入2011年春季,中国北方大部地区降水仍偏少,地面植被状况虽未得到改善,但气温仍偏低,土壤解冻较晚,而2011年春季冷空气较常年偏弱,使得2011年沙尘暴发生时间较常年偏晚,且沙尘天气过程偏少;②中国北方沙尘天气常发区域土壤湿度较常年偏高,土壤状况良好,土质不够疏松,是2011年春季沙尘天气偏少的一个重要因素;③2011年春季蒙古国及内蒙古大部地区纬向风为偏西风的负距平区,不利于起沙及沙尘粒子向东输送。  相似文献   
26.
使用GRAPES_SDM沙尘暴数值模式,对2011年4月28-30日中国北方强沙尘暴天气进行分析,讨论高空急流在此次过程中对沙尘传输的影响,得出以下结论:(1)GRAPES_SDM沙尘暴模式较好地模拟了此次沙尘暴过程的范围和强沙尘暴中心,整体模拟效果较好;(2)沙尘天气发生时间及移动路径与200 hPa高空急流的加强、移动发展有很好的对应关系;(3)高空强纬向风速的加强能够促使中低层形成垂直环流圈,其下沉支流使高空动量有效下传到近地面,进而在地面形成大风及扬沙和沙尘暴天气,强沙尘暴中心位于此垂直环流圈的下沉支;(4)等熵位涡与高空急流及地面沙尘浓度分布演变有很好的对应关系,等熵位涡位于高空急流北侧,地面沙尘浓度中心位于高空急流出口区、等熵位涡中心西南侧、等值线密集带;高层高值位涡区向下延伸的路径与高空急流北侧纬向风速等值线密集带有非常好的对应关系。本文还通过对高空急流轴线动力、热力结构垂直剖面的分析,探讨了高空急流对大范围沙尘天气影响的可能机制。  相似文献   
27.
目前沙尘暴灾害防御与应急响应都是被动防御为主,沙尘暴风险管理体系是科学的沙尘暴主动式防灾减灾体系,具有前瞻性、完备性,人们已经认识到该风险管理体系的重要性,但其目前尚未建立。我们对沙尘暴风险管理体系进行初步研究,指出沙尘暴的风险是沙尘暴为受灾地区带来的损失的不确定性。借鉴其他科学中相对成熟的风险管理框架和流程,并结合沙尘暴灾害特点,构建了沙尘暴风险管理体系,包括沙尘暴灾害防御防备系统,沙尘暴灾中应急响应系统和沙尘暴灾后重建系统,希望对沙尘暴风险管理制度化提供科技支撑。  相似文献   
28.
沙尘暴危险度的定量评估研究   总被引:4,自引:2,他引:2  
姜大海  王式功  尚可政 《中国沙漠》2011,31(6):1554-1562
目前对于沙尘暴风险管理的系统性和实用性有待完善,在沙尘暴危险度研究中缺乏对于气象因子的实时定量评估方法,使得气象服务工作也只能为沙尘暴提供实时卫星监测结果,尚不能细致提供沙尘暴危险度的实时定量评估结果,不同程度地影响了沙尘暴防灾减灾工作的高效实施。系统化沙尘暴风险分类,将沙尘暴灾害应对分为防灾过程和减灾过程,明确了沙尘暴危险度在这两种过程中的主要构成,结合沙尘暴危害特点提出了实时数量化的沙尘暴危险度诊断表达式,对表达式各组成部分进行了初步讨论。使用层次分析法结合聚类分析,分析甘肃民勤地区2001年6月1日—2010年11月15日的地面气象观测资料,得出该地沙尘暴危险度具体表达形式并进行计算,给出了在此期间民勤地区沙尘暴危险度的定量评估结果。结果表明,在民勤地区该时间段内,沙尘暴危险度范围为0.45~4.49,平均危险度为1.99,超过平均危险度的沙尘暴时次有25次,其中最危险的沙尘暴发生于2010年4月24日,完全符合历史事实。由此说明,沙尘暴危险度表达式能够客观地给出沙尘暴危险度实时诊断结果,且其结构清楚,计算简单,便于气象服务业务工作的使用与推广。  相似文献   
29.
利用Grimm1.108、Thermo RP 1400a、TSP以及CAWS-600等仪器,对2008年4月17日至23日发生在塔克拉玛干沙漠腹地的1次强沙尘暴过程的颗粒物质量浓度进行连续观测,结合天气资料分析得出:①Grimm1.108颗粒物分析仪监测结果表明,日平均浓度出现两个峰值区,主峰值出现在20日,次峰值出现在18日,而小时平均浓度高值区主要集中4月19日至20日,21日中午存在1个峰值区,其他时段浓度相对较低。②强沙尘暴发生时的分钟观测数据表明,随着风速的逐渐增强,沙尘暴强度逐渐增强,不同粒径颗粒物浓度达到最大值,>0.23 μm颗粒物总浓度为39 496.5 μg·m-3,>20.0 μm颗粒物总浓度为5 390.7 μg·m-3,随后浓度逐渐下降。③PM10和TSP的浓度变化同样反映沙尘天气的过程和强度,沙尘暴前期大气中颗粒物浓度远低于强沙尘暴期间,随沙尘天气减弱,颗粒物浓度明显下降。④沙尘天气过程中大气颗粒物浓度变化具有以下规律:晴天<浮尘天气<浮尘、扬沙天气<沙尘暴天气。风速大小直接影响大气中颗粒物浓度,风速越大颗粒物浓度越高。气温、相对湿度和气压是影响沙尘暴强度的重要因素,也间接影响大气中颗粒物浓度的变化。  相似文献   
30.
内蒙古地区沙尘暴的分布特征   总被引:6,自引:4,他引:2  
康玲  孙鑫  侯婷  沈建国  郭瑞清 《中国沙漠》2010,30(2):400-406
使用1995—2007年13 a内蒙古地区118个地面测站的沙尘暴、能见度、风速风向观测资料,确定了不同范围、不同强度沙尘暴标准,给出了特强、强、次强和弱沙尘暴日的个例谱;对地理分布、时间分布、气象要素分布特征进行分析。结果表明,近13 a内蒙古地区有5个沙尘暴多发中心,强和特强有两个高发区。年变化显著,1995年沙尘暴开始减少,1999年开始增加,2001年达到最多,之后开始减少,2003年沙尘暴次数最少,2004年开始呈波动增加趋势。在一年内,沙尘暴、强和特强沙尘暴集中出现在春季的3—5月,4月最多,沙尘暴下旬相对集中,上、下旬是大、小范围强和特强沙尘暴易发时段。3—5月,平均地面气温高于5 ℃,平均地面相对湿度低于40%的地区是沙尘暴多发区。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号