首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   174篇
  国内免费   139篇
测绘学   1篇
大气科学   396篇
地球物理   6篇
地质学   5篇
海洋学   13篇
自然地理   4篇
  2024年   4篇
  2023年   28篇
  2022年   34篇
  2021年   54篇
  2020年   58篇
  2019年   75篇
  2018年   76篇
  2017年   56篇
  2016年   38篇
  1954年   2篇
排序方式: 共有425条查询结果,搜索用时 15 毫秒
21.
沈新勇  王林  乔娜  尹宜舟  李焕连 《大气科学》2022,46(6):1319-1331
本文利用NCEP/NCAR提供的1°×1°的再分析资料,应用WRF4.0中尺度数值模式对2016年4月13日华南地区的一次飑线升尺度过程进行模拟,并设计一系列的敏感性试验,详细研究了南岭对飑线升尺度增长的影响以及可能的机制。结果表明:WRF模式较好的模拟了本次飑线过山前后的变化以及其降水的分布。强对流在过山后比过山前发展要强烈,水平的尺度增长快。但不同高度的地形敏感性试验表明,适宜的地形高度对于风暴的发展更有利。地形影响了飑线的尺度和组织,地形过高会使得广东北部的对流分散。地形可以通过改变水平流场、水汽场、垂直运动以及低层的垂直风切变等来间接影响飑线中的对流单体的分布和对流单体的强度。无地形阻挡时,有利于急流的北进,水汽输送更为有利。但是,一定的地形高度对低层的垂直运动是有利的。地形较高,则会利于高层的垂直运动,低层更多的可能以绕流为主。当地形超过一定高度时,低层的辐合场也相应的减弱。  相似文献   
22.
孙思远  管兆勇 《大气科学》2022,46(5):1041-1054
2020年梅汛期(6~7月)长江中下游地区发生了严峻的汛情。2020年梅雨期长度和强度均远超历史平均水平。本文利用逐日NCEP/NCAR再分析资料和全球降水量网格数据集,研究了本次梅汛期降水特征及其与对流层上层斜压波动活动的联系。结果表明:本次梅汛期,长江中下游地区的总降水量和降水异常大值区位于安徽南部,共有7次连续的降水过程发生。长江中下游地区在对流层中低层辐合、高层辐散,且该地区上空有强的异常上升运动,有利于异常强降水的发生发展。同时,水汽自孟加拉湾和中国南海地区输送至长江中下游地区,为强降水的发生提供了充足水汽。利用小波分析研究该地区的逐日降水标准化时间序列时,发现其存在2~4天和6~14天的显著周期。高频(2~14天)扰动所显示的Rossby波动在对流层上层表现出向下游频散的特征,波动源于贝加尔湖附近。波扰动能量和通量所显示的波动向下游的传播过程与波包的传播过程较为一致,分别源于地中海和贝加尔湖附近的波扰能向东或向东南频散至长江中下游地区,有利于该地区扰动加强并进而有利于强降水的发生和维持。以上结果加深了人们对2020年超长“暴力梅”成因的认识并可为有效预测类似事件提供线索。  相似文献   
23.
为避免直接同化时反射率非线性观测算子线性化带来的线性近似误差问题,目前许多研究和业务中还常采用间接同化方式来同化雷达反射率因子,其通过背景场温度判定水凝物类型及比例。基于一种实时天气背景依赖的雷达反射率因子间接同化方案,进行了4次暴雨过程(2次强对流,2次锋面)的循环同化及预报试验。结果表明:对于强对流暴雨个例,相对于传统温度判定方案,天气背景依赖方案的温度预报误差更小、降水预报评分更高,而对于锋面过程区别不明显;进一步机理分析表明,对于强对流暴雨个例,由于背景依赖方案在同化反射率因子时引入了实时天气背景信息,使得分析场水凝物结构能够更好表征实际对流特征且与其它模式变量更为协调,进而改善了模式预报的热、动力及水汽条件,从而改善了降雨预报效果;而锋面暴雨由浅对流过程占主导,水凝物以低层的雨水为主导,冰相水凝物对于该过程的影响较小,由于两种方案反演的雨水结构和量级均相似,因此降雨预报差异较小。  相似文献   
24.
基于WRF模式(Weather Research and Forecasting Model)分析2020年超长梅汛期内11次强降水事件的预报误差来源。分别以FNL(Final Global Data Assimilation System)、TIGGE_EC(THORPEX Interactive Grand Global Ensemble from European Centre for Medium-Range Weather Forecasts)作为初始场进行预报,对比预报结果发现,TIGGE_EC初始场的预报结果普遍优于FNL,这说明初始条件的不确定性对预报结果有重要影响。进一步探究初始条件不确定性(初始误差)来源的区域(敏感区)和变量(敏感变量)发现,敏感区集中分布于降水区西侧上游,相对应的敏感变量为水汽场。分别考察动能、有效位能以及比湿能在初始误差总能量中的占比,结果表明,扰动比湿能占比最小,但敏感性试验 表明比湿场扰动对预报效果的影响最大。选取比湿场扰动对预报效果影响最大且WRF_EC具有更好预报效果的6个暴雨事件,通过HYSPLIT后向轨迹模式分别追踪其累计降水量最大值点的水汽来源及路径发现,有6个事件均有向降水区西侧上游延伸的水汽来源通道,进一步表明了敏感区的初始水汽场的准确性对暴雨预报的影响。因此降水区西侧上游的水汽场的误差是这11次梅汛期暴雨过程重要的预报误差来源,对其准确描述可有助于预报效果的提升。  相似文献   
25.
利用动态植被模型CLM4-CNDV、区域气候模式RegCM4.6-CLM3.5和全球气候模式CAM4探究了当前气候状态下东亚区域可能的自然植被分布以及自然植被恢复对东亚区域气候产生的可能影响。结果表明,当前气候条件下,农作物区可能分布的自然植被为:蒙古高原以北、东北、华北平原和四川盆地的部分地区为裸土;东亚东南部及蒙古高原以北地区主要为林地;四川盆地及山东半岛主要为灌木;东北地区、东南沿海和长江中下游地区主要为草地。将农作物区恢复为自然植被后将对区域气候产生显著影响。其中,东亚东部大部分地区由于植被叶面积指数增加引起的蒸散发增强,使得夏季降水增加且温度降低显著;华北、四川盆地和广东中部平原地区植被叶面积指数减小,伴随区域内夏季降水显著减少且温度升高。而蒙古高原地区的气候变化不仅受区域内植被覆盖变化影响,还可能与印度地区和我国东南部植被变化引起的大气环流调整有关,使得蒙古高原西部冬季温度降低,而其东部夏季温度升高,同时夏季降水减少显著。研究所采用的试验方案是在相对理想的情况下进行的,但其结果为进一步区分不同地区植被覆盖变化的影响提供一定的参考。  相似文献   
26.
采用WRF模式对华南飑线的升尺度增长过程进行模拟,利用Barnes滤波将模式数据分解为三个尺度,分别代入相应的能量方程中进行计算,从能量角度研究飑线升尺度增长过程中动能和位能的变化,以及三个尺度系统能量的相互转化。研究表明:动能的变化与飑线过程中各尺度系统的演变有较好的对应,β中小尺度对流的发展对应β中小尺度系统动能的变化,而在飑线升尺度增长过程中,α中尺度系统动能快速增长。在飑线发展过程中环境场通过位能向动能的转化使得β中小尺度对流快速发展加强,而β中尺度飑线的快速发展与合并加强导致了飑线的升尺度增长。在飑线的升尺度增长过程中,β中小尺度动能大量转化为α中尺度动能使得α中尺度飑线迅速增强,而环境场对飑线升尺度增长过程的直接影响较小。   相似文献   
27.
南海季风爆发的年代际转折与东亚副热带夏季降水的关系   总被引:1,自引:0,他引:1  
利用1979—2016年NCEP再分析资料, 分析了南海季风爆发的年代际转折与东亚副热带夏季降水的关系。结果表明:南海夏季风爆发时间在1993/1994年出现年代际转变, 1979—1993年爆发时间相对偏晚, 夏季华南降水偏少, 长江中下游至日本南部降水偏多; 1994—2016年爆发时间偏早, 夏季华南降水偏多, 长江中下游到日本南部降水偏少。南海季风爆发时间年代际转折与夏季东亚副热带降水关系可能受到菲律宾越赤道气流强度的调控, 季风爆发时间与菲律宾越赤道气流有显著正相关, 且均在1993/1994年间存在年代际转变。在1994—2016(1979—1993)年南海夏季风爆发偏早(晚), 菲律宾越赤道气流偏弱(强), 澳大利亚北部有偏北(南)风异常, 将暖池的热量往赤道输送, 使得赤道对流增强(减弱), 产生异常上升(下沉)运动汇入Hadley环流上升支, 增强(减弱)的Hadley环流导致下沉主体偏北(南), 促使副高脊线偏北(南), 从西北太平洋(孟加拉湾)往华南地区(江淮到日本南部)输送水汽增强, 所以华南(江淮到日本南部)夏季降水偏多。   相似文献   
28.
为了进一步了解青藏高原闪电的产生氮氧化物(LNOx)经由光化学反应对O3浓度变化及夏季O3低谷形成的可能影响,本文利用2005~2013年由OMI卫星得到的对流层NO2垂直浓度柱(NO2 VCD)、O3总浓度柱(TOC)和O3廓线以及星载光学瞬变探测器OTD和闪电成像仪LIS获取的总闪电数资料,对青藏高原和同纬度长江中下游地区的TOC和NO2 VCD月均值时空分布特征、闪电与NO2 VCD的相关性和O3的垂直分布特征及其与LNOx的关系进行了对比分析。结果表明,青藏高原的O3低谷主要出现在夏季和秋季,其TOC值比同纬度长江中下游地区低约10~15 DU(Dobson unit)。青藏高原NO2VCD总体较小,表现为夏高冬低的分布特征。青藏高原夏季O3浓度受南亚高压的影响总体呈减小趋势,但因强雷暴天气导致对流层中上部LNOx浓度升高,并随强上升气流向对流层顶输送,同时通过光化学反应使O3浓度增加,缩小了青藏高原和同纬度地区的O3浓度差,减缓了O3总浓度的下降,抑制了夏季O3低谷的进一步深化。  相似文献   
29.
为了进一步研究高原涡、西南涡对西南地区暴雨的影响,本文用中国气象局自动站与CMORPH降水数据融合的逐时降水资料、国家卫星气象中心的逐时FY-2E卫星的云顶亮温(TBB)资料、欧洲气象资料中心(ERA-interim)的再分析资料,通过天气学诊断分析方法以及拉格朗日轨迹模式HYSPLITv4.9,对发生在四川盆地的有高原涡东移影响西南涡发展引发暴雨的两次过程进行对比分析,发现:(1)两次暴雨过程的降水强度和分布有明显区别,并且TBB活动特征显示在过程一中有MCC(Mesoscale Convective Complex)的产生和发展,过程二则没有。(2)对于过程一,500 hPa上,高原涡逐渐减弱为高原槽并伸展到四川盆地上空,850 hPa上,在鞍型场附近有MCC的产生和发展,200 hPa上,高原涡在南亚高压北部偏西风急流下方的强辐散区内,位于南亚高压东南侧急流区下方稳定少动,偏东风急流北部有辐散中心,有利于西南涡的加强。对于过程二,500 hPa高原涡东移在四川盆地上空与西南涡耦合,形成一个稳定且深厚的系统,这也是过程二的暴雨强度比过程一强的最主要原因。200 hPa上,四川盆地始终位于南亚高压东侧的西北气流中,“抽吸作用”明显。(3)在过程一中,位涡逐渐东传且位涡增加的地方对应强降水区与MCC发展区,反映了暴雨和位涡的发展基本一致。在过程二中,中层位涡高值区从高原上东移并下传至盆地上空,两涡耦合使得上下层打通,位涡值比耦合之前单独的两涡强度更强。 MCC产生的必要条件是中层大气要有强正涡度、强辐合和强上升运动,在未产生MCC前,过程一与过程二在盆地上空的动力条件甚至是相反的;从热力条件看,过程一中有明显的干冷空气入侵,增强不稳定条件,有利于MCC的产生并引发强降水;另一方面,本文也应证了二阶位涡的水平分布与暴雨落区有较好的对应关系。(4)通过拉格朗日方法的水汽轨迹追踪模式和聚类分析方法分析可得两次暴雨过程的水汽输送源地和通道也有明显区别,过程一主要有两条水汽通道,通道一来自阿拉伯海和孟加拉湾洋面的底层,通道二来自四川南部750 m以下高度;而过程二的主要水汽输送通道有三条,通道一来自西方地中海、黑海和里海上空1500~2500 m高度附近,通道二来自阿拉伯海和印度洋的底层,通道三的水汽从孟加拉湾低层绕过云贵高原直接输送到四川盆地。  相似文献   
30.
李欣  朱伟军 《气象科学》2019,39(2):143-152
基于1971—2016年NCEP/NCAR(美国环境预报中心和国家大气研究中心)的逐日再分析资料及NCPC(美国国家海洋和大气管理局气候预报中心)的海温、大气环流及海洋指数等资料通过多尺度能量分析(MS-EVA)等方法,把冬季北半球风暴轴看做一整体,分析了风暴轴区域多尺度的能量变化特征及其可能机制。主要结论概括如下:(1)多年气候平均状态下,风暴轴的动能来源主要表现为在风暴轴中上游先由低频尺度向天气尺度输送有效位能,随后在风暴轴主体区再由天气尺度有效位能转换为天气尺度动能,其中风暴轴西端可直接由低频尺度向天气尺度输送动能。(2)北半球三大风暴轴联合EOF结果表明:第一模态下,主要体现了北西伯利亚风暴轴与北太平洋风暴轴强度的减弱(增强),同时伴随着北大西洋风暴轴位置北抬(南压);第二模态下,主要体现了北西伯利亚风暴轴强度减弱(增强),同时北太平洋风暴轴位置北抬(南压)中东部强度增强(减弱),而北大西洋风暴轴位置南压(北抬)。(3)回归分析表明:北半球风暴轴异常在不同模态下与低频尺度环流联系密切。低频尺度波动可通过海温及西风急流等异常变化先影响风暴轴区域多尺度间的能量转换,进而影响风暴轴整体的异常变化。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号