首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   34篇
  国内免费   27篇
测绘学   2篇
大气科学   71篇
地球物理   3篇
地质学   30篇
海洋学   11篇
综合类   4篇
自然地理   13篇
  2024年   2篇
  2023年   9篇
  2021年   12篇
  2020年   5篇
  2019年   5篇
  2018年   3篇
  2017年   6篇
  2015年   3篇
  2014年   14篇
  2013年   4篇
  2012年   5篇
  2011年   16篇
  2010年   5篇
  2009年   20篇
  2008年   9篇
  2007年   4篇
  2006年   3篇
  2005年   5篇
  2004年   1篇
  2001年   2篇
  1999年   1篇
排序方式: 共有134条查询结果,搜索用时 78 毫秒
21.
根据全球气溶胶气候模式GEM-AQ/EC的1995~2004年模拟,分析了青藏高原大气黑碳气溶胶的来源、传输及沉降季节特征。研究表明:青藏高原黑碳气溶胶主要来自自由对流层和大气边界层的输送。相对于自由对流层的黑碳输送,紧邻青藏高原的南亚、东亚以及东南亚大气边界层的输送更有效,它形成了青藏高原由北向南、自西往东黑碳气溶胶浓度和沉降明显递增的基本分布形态。横跨欧亚大陆自由对流层的黑碳气溶胶由西向东向青藏高原的输送全年不变,夏季输送路径最北但强度最弱,冬季路径最南而强度最强。大气边界层黑碳气溶胶的输送受控于亚洲季风环流变化,来自南亚的黑碳气溶胶在春季越过孟加拉湾传输进入高原东南部,夏季则可翻越喜马拉雅山抵达青藏高原南部腹地;同时我国中部排放的黑碳气溶胶也在东亚夏季风向北扩展中驱动它从东向西往青藏高原东北部传输。从秋季到冬季,随着夏季风撤退,南亚黑碳源区向青藏高原传输衰退,东亚冬季风的反气旋性环流的南侧及西南侧的偏东风携带秋季我国东南部源区和冬季东南亚源区黑碳气溶胶向青藏高原东南部传输。受青藏高原明显的暖湿季和干冷季气候影响,干湿沉降分别主导了青藏高原冬季和夏季黑碳沉降,夏季青藏高原黑碳气溶胶沉降总量大多超过8~10 kg·km-2,在高原东北部的最高值超过40 kg·km-2。冬季青藏高原黑碳气溶胶沉降量最低,大部地区黑碳沉降低于5 kg·km-2。青藏高原黑碳沉降的冬夏季节相差约为2~8倍。  相似文献   
22.
黑碳是不完全燃烧产生的一种难熔的含碳物质的连续统一体,由焦碳(char)和烟炱(soot)组成.岱海与太湖沉积物焦碳和烟炱浓度对比显示,两个湖泊焦碳浓度和通量变化受局地火事件影响,无明显的规律; 而烟炱具有相似的变化历史,主要反映在1970年代后期急剧升高,与中国工业化历史一致.烟炱粒径细小,具区域传输特点,可以通过沉积物指示大气烟炱.结合当前大气气溶胶烟炱浓度,恢复了岱海与太湖地区最近200年来的大气烟炱浓度.其变化趋势与200年来北半球温度对比显示,大气烟炱中的高浓度对应于高温,低浓度对应低温.这种历史关系进一步证实大气烟炱在全球增温中具有极其重要的作用.  相似文献   
23.
黑碳气溶胶辐射强迫全球分布的模拟研究   总被引:15,自引:3,他引:15  
张华  马井会  郑有飞 《大气科学》2008,32(5):1147-1158
利用一个改进的辐射传输模式,结合全球气溶胶数据集(GADS),计算晴空条件下冬夏两季黑碳气溶胶的直接辐射强迫在对流层顶和地面的全球分布。计算结果表明,与温室气体引起的整层大气都是正的辐射强迫不同,黑碳气溶胶的辐射强迫在对流层顶为正值,而在地面的辐射强迫却是负值。作者从理论上解释了造成这种结果的原因。对北半球冬季和夏季而言,在对流层顶黑碳气溶胶的全球辐射强迫的平均值分别为0.085W/m2和0.155 W/m2,在地面则分别为-0.37 W/m2和-0.63 W/m2。虽然气溶胶的辐射强迫主要依赖于其本身的光学性质和在大气中的浓度,太阳高度角和地表反照率对黑碳气溶胶的辐射强迫会产生很大的影响。研究指出:黑碳气溶胶在对流层顶正的辐射强迫和在地面负的辐射强迫的绝对值都随太阳天顶角的余弦和地表反照率的增加线性增大;地表反照率对黑碳气溶胶辐射强迫的强度和分布都有重要影响。黑碳气溶胶的辐射强迫分布具有明显的纬度变化特征,冬夏两季的大值区都位于30°N~90°N之间,表明人类活动是造成黑碳气溶胶辐射强迫的主要原因。  相似文献   
24.
基于新疆深390 cm的SCZ17黄土剖面的黑碳(BC)记录以及总有机碳含量(TOC)和磁化率结果,并与巴里坤湖孢粉记录的温度数据对比,重建了该区末次冰消期(16~12 ka,对应剖面深度202~274 cm)的火灾历史并探讨了其控制因素。结果表明:1)在末次冰消期期间黑碳通量与TOC变化具有较好的一致性,均呈上升趋势,说明随着植被量的增加,生物质燃烧活动增加;2)BC通量与湿度和温度数据的EEMD结果显示:①在13~16 ka期间,剖面的黑碳通量指示的区域生物质燃烧变化与温度变化存在着近乎同步的关系,而在12~13 ka期间可能由于湿度的影响二者的同步关系不太明确;②χfd%所指示的湿度变化和黑碳通量的对比结果显示,湿度峰值/谷值分别对应着黑碳通量的谷值/峰值,即当气候湿润时,火灾活动频率低;气候干旱时,火灾活动频率高。因此,认为研究区火灾活动倾向于发生在暖干的气候条件下,且可燃生物量可能控制着区域火灾变化的长期趋势,而由温度和湿度变化所造成的火灾活动的次一级波动叠加在这一长期趋势上。  相似文献   
25.
大气气溶胶成分的复杂变化导致其在气候变化评估中具有很高的不确定性。气溶胶成分遥感利用遥感观测的气溶胶光学—微物理参数,定量估计整层大气气溶胶主要成分含量,具有实时快速、空间覆盖、保持气溶胶自然状态等特点。本文介绍了近年来气溶胶成分遥感在理论基础和观测研究方面的进展情况。首先,在简要回顾反演算法发展的基础上,以目前较先进的成分遥感分类模型(包括黑碳、棕色碳、沙尘、非吸光有机物、细粒子无机盐、海盐和水)为例,详细分析了气溶胶成分遥感反演的思路。据此提出了基于气溶胶综合光学—微物理特性(包括光学吸收/散射、粒径尺度、形状等敏感性特征参数)的气溶胶成分遥感识别方法。之后,结合气溶胶混合方式,讨论了复折射指数计算方法及其对成分反演的影响,并给出了利用同步化学采样观测验证气溶胶成分遥感的一些结果示例。最后,结合观测手段拓展、成分模型优化、反演精度提升、应用能力推广等4个方向,展望了大气气溶胶成分遥感的发展趋势,及其在全球气候变化评估等领域的应用。  相似文献   
26.
夏季硫酸盐和黑碳气溶胶对中国云特性的影响   总被引:1,自引:2,他引:1  
利用WRF-Chem(Weather Research and Forecasting model coupled with Chemistry)模式研究2006年8月1日—9月1日中国区域硫酸盐和黑碳气溶胶对云特性的影响。模式验证利用了卫星和地面观测的气象要素、化学物质浓度、气溶胶光学特性和云微物理特性。模式性能评估表明该模式能较好地抓住气象要素(温度、降水、相对湿度和风速)的量级和空间分布特征。通过与地面观测和MODIS卫星数据对比发现,尽管模式模拟还存在偏差,但还是能较好模拟出气溶胶物种的地表浓度、气溶胶光学厚度(AOD)、云光学厚度(COD)、云量(CLDF)、云顶云滴有效半径(CER)和云水路径(LWP)。通过两个敏感性试验(分别增加二氧化硫和黑碳排放量至控制试验排放的3倍)与控制试验的对比发现硫酸盐比黑碳更易成为云凝结核,在中国东部云顶云滴数浓度和其它云特性参数对二氧化硫排放增加的响应均从北向南呈递增,这与地面湿度分布有关。云滴有效半径对硫酸盐气溶胶的响应符合气溶胶第一间接效应的定义,即硫酸盐气溶胶增多,云滴数浓度增加,云滴有效半径减少,但是对黑碳气溶胶的响应在各区域不尽相同。还发现黑碳对云量的影响远大于硫酸盐,主要原因是由于黑碳气溶胶直接辐射效应(对太阳光的吸收)导致的云的“燃烧”作用。   相似文献   
27.
利用山东惠民国家基准气候站2018年12月—2019年11月的黑碳质量浓度、常规气象观测资料以及GDAS数据,研究了该地区黑碳气溶胶的变化特征,并基于后向轨迹模型对其潜在源区进行了分析。研究结果表明:1)观测期间,黑碳质量浓度平均值为3.22μg·m~(-3),季节变化呈冬、春季高,夏、秋季低的特点;春、夏、秋季黑碳质量浓度的高频值在2μg·m~(-3)以内,冬季的高频值在6μg·m~(-3)以上。2)黑碳质量浓度日变化呈双峰结构,峰值分别出现在06:00—08:00和19:00—21:00,谷值出现于13:00—15:00。3)降雨和风对黑碳质量浓度有明显影响。非降雨期黑碳质量浓度是降雨期的2.8倍;当风速小于3 m·s~(-1)时,黑碳质量浓度随风速增大而减小;冬季在西南西方向、春季在正南方向过来的气团易造成黑碳质量浓度高污染。4)惠民气流输送的季节变化特征明显。春、秋、冬季来自鲁中、河北和苏北等周边地区的气流所占比例较高,对应黑碳质量浓度高值;夏季来自海洋方向的气流占比较高,对应的黑碳质量浓度较低。  相似文献   
28.
《高原气象》2021,40(3):671-679
利用EA-12型黑碳仪对邢台市2019年1-12月的黑碳(BC)浓度监测数据和同期气象观测数据,分析了邢台市BC污染特征、来源及与气象因子的变化关系。结果表明:邢台市BC日平均浓度为0.85μg·m~(-3),全年占比79.80%的浓度频数集中分布在0.30~1.20μg·m~(-3);而1月份占比达到90.62%的浓度频数分布在1.05~5.05μg·m~(-3),1月份的严重BC污染对全年环境空气质量恶化起到了重要贡献;当风速8 m·s~(-1)和8 m·s~(-1)时,分别存在偏北方向和偏西与偏南方向的输送影响;湿沉降可以对BC起到了清除作用,而降水量和降水时长对BC的湿清除具有同等的重要作用;燃煤和机动车尾气排放的本地、局地源对邢台市的BC污染影响明显,当大气逆温底高200 m时,由于扩散能力减弱和堆积效应的共同影响,BC浓度将出现明显增加。  相似文献   
29.
陈霞  魏文寿  顾光芹  安月改 《气象学报》2012,70(6):1235-1246
利用塔克拉玛干沙漠腹地塔中气象站2006年8月1日-2007年7月31日近地层80 m铁塔逐时温度、辐射和5 minPM10浓度、黑碳(BC)质量浓度、散射系数等数据,结合地面常规气象数据筛选出四季沙尘过程,剔除云的影响,以每次沙尘过程的晴空为大气背景值,分析沙尘气溶胶对低层大气的加热效应.结果表明,沙漠腹地沙尘过程对低层大气日平均温度有显著的增温效应,扬沙在冬、春季最剧烈,日平均温度分别高出晴空3.4和3.8℃,沙尘暴其次,浮尘最小.沙尘过程显著地增大了大气逆辐射量,沙尘暴日平均为晴空的1.24倍,扬沙为晴空的1.21倍.沙尘影响低层大气温度梯度分布,显著缩短了大气的逆温时间,减弱了逆温强度.沙尘过程对低层大气增温的原因,春季是大粒子浓度的显著增大,冬季是吸收性粒子的增多,而夏、秋季则为小粒子浓度的增大和散射系数的增大.低层大气温度梯度在扬沙天气随PM10的增加而减小,主要由低层10m以下大气温度变化引起;浮尘天气主要与小粒子浓度关系密切,其影响高度最大,春、夏季可以达全层80 m,秋、冬季也可超过32 m;沙尘暴一致性较差,除秋季外,均由2 m以内温度变化所致.  相似文献   
30.
谢聪慧  徐建中 《冰川冻土》2017,39(6):1249-1257
为研究兰州市冬季亚微米气溶胶的吸光特性,利用2014年1月10日至2月4日黑碳仪(AE31)和高分辨率飞行时间质谱仪(HR-ToF-AMS)观测资料,对气溶胶的吸光特性进行了分析。首先根据黑碳气溶胶(BC)和棕色碳气溶胶(BrC)的光学特性差异对二者进行区分,然后分析两者的吸光特性。结果表明:观测期间亚微米气溶胶中黑碳和有机物的平均浓度分别为3.7 μg·m-3和29.3 μg·m-3。随着亚微米气溶胶浓度的增加,黑碳和棕色碳吸收系数均增加,但棕色碳吸收系数增加得更快。黑碳和棕色碳在550 nm处的平均吸收系数分别为(9.9±5.9)Mm-1和(51.0±28.1)Mm-1。棕色碳的Angstrom指数为4.4。另外,采用正定矩阵因子解析模型(PMF)将棕色碳的来源划分为六种(碳氢类有机气溶胶(HOA)、烹饪类有机气溶胶(COA)、生物质燃烧(BBOA)、燃煤排放(CCOA)、半挥发低氧化程度有机气溶胶(SV-OOA)和低挥发高氧化程度有机气溶胶(LV-OOA)),并通过多元线性回归方法计算了各来源的吸光贡献,其中BBOA和CCOA对棕色碳吸光系数的贡献为41.5%,其次是SV-OOA(32.8%)、LV-OOA(14.2%)、HOA(7.8%)和COA(3.8%),说明一次和二次有机气溶胶均为兰州地区棕色碳的重要来源。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号