首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   858篇
  免费   98篇
  国内免费   100篇
测绘学   208篇
大气科学   94篇
地球物理   123篇
地质学   184篇
海洋学   99篇
天文学   208篇
综合类   78篇
自然地理   62篇
  2024年   1篇
  2023年   5篇
  2022年   23篇
  2021年   19篇
  2020年   17篇
  2019年   23篇
  2018年   24篇
  2017年   19篇
  2016年   27篇
  2015年   33篇
  2014年   54篇
  2013年   38篇
  2012年   49篇
  2011年   47篇
  2010年   28篇
  2009年   80篇
  2008年   61篇
  2007年   63篇
  2006年   48篇
  2005年   50篇
  2004年   70篇
  2003年   50篇
  2002年   38篇
  2001年   28篇
  2000年   35篇
  1999年   30篇
  1998年   31篇
  1997年   17篇
  1996年   12篇
  1995年   8篇
  1994年   9篇
  1993年   8篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1905年   1篇
  1880年   1篇
  1877年   1篇
排序方式: 共有1056条查询结果,搜索用时 171 毫秒
31.
32.
Riverbanks along the Arno River have been investigated with the aims of de?ning the main mechanisms of failure and retreat, their spatial distribution, and their causes. Geomorphological aspects were investigated by a reconnaissance of riverbank processes, for a number (26) of representative sites. Laboratory and in situ tests were then performed on a selected number of riverbanks (15). Based on the material characteristics, six main typologies of riverbanks have been de?ned, with homogeneous ?ne‐grained and composite banks representing the most frequent types. Slab‐type failures are the most frequent mechanism observed on ?ne‐grained banks, while cantilever failures prevail on composite banks. The role of river stage and related pore water pressure distributions in triggering the main observed mechanisms of failure has been investigated using two different types of stability analysis. The ?rst was conducted for 15 riverbanks, using the limit equilibrium method and considering simpli?ed hypotheses for pore water pressure distribution (annulment of negative pore pressures in the portion of the bank between low water stage and peak stage). Stability conditions and predicted mechanisms of failure are shown to be in reasonably good agreement with ?eld observations. Three riverbanks, representative of the main alluvial reaches of the river, were then selected for a more detailed bank stability analysis, consisting of: (a) de?nition of characteristic hydrographs of the reach with different return periods; (b) modelling of saturated and unsaturated ?ow using ?nite element seepage analysis; and (c) stability analysis with the limit equilibrium method, by adopting pore water pressure values derived from the seepage analysis. The results are compared to those obtained from the previous simpli?ed analysis, and are used to investigate the different responses, in terms of stability, to different hydrological and riverbank conditions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
33.
中国夏季降水异常空间模与副热带高压的关系   总被引:13,自引:6,他引:13       下载免费PDF全文
王晓春  吴国雄 《大气科学》1997,21(2):161-169
本文用1959~1994年6、7、8月全国范围47个5°×5°经纬度网格降水资料分析了夏季降水异常空间模的月际差异,并在此基础上用西太平洋副高指数及青藏高原指数#FKB#FS分析降水异常空间模与环流的关系,为检验环流指数与降水相关场的整体信度,还对8月份降水资料进行了Monte-Carlo检验。结果表明,夏季总降水异常的空间模在每一月份中并非表现得同样清楚,江淮流域与河套及华南的反相关在8月份表现得最清楚。而青藏高原中东部南北两侧的负相关在6月及8月很清楚,7月份次之。8月份西太平洋副高北界异常对江淮流域与河套及华南地区降水异常反相关的产生有很大作用。副高稳定偏北时,河套、华南易涝,江淮易旱。反之亦然。青藏高原指数#FKB#FS与逐月降水的相关分析表明,青藏高原上高压及低涡活动对高原中东部南北两侧负相关的产生有一定作用。当高压活动偏多时,北侧易旱、南侧易涝。并且6月及8月的作用较大,7月较小。另外,8月份副高活动对这一降水异常空间模的产生也有一定影响。  相似文献   
34.
 40Ar/39Ar同位素年龄测定,获得南天山蛇绿混杂岩基质黑云母石英片岩单矿物黑云母的两个坪年龄分别为(370.0±4.8)Ma和(259.0±3.3)Ma;中天山南缘长英质糜棱岩单矿物黑云母的坪年龄为(250.5±7.9)Ma,二云母花岗岩单矿物白云母的坪年龄为(348.9±0.3)Ma。结合南天山古生代沉积特征和塔里木及伊犁-哈萨克斯坦板块古地磁数据的综合分析,提出南天山晚泥盆世至石炭纪早期完成向伊犁-哈萨克斯坦板块的B型俯冲,中-晚二叠世进行陆内A型俯冲造山的板块碰撞演化模式。  相似文献   
35.
南华砷铊矿床雄黄标型特征   总被引:2,自引:1,他引:2  
雄黄是云南省南华砷铊矿床中最主要工业矿物。它不仅与铊矿物共生,而且本身含有较高的铊,可高达(n×10~n×100)×10-6。砷铊矿床雄黄与砷矿床雄黄相比较在产出条件,微量元素、硫同位素和晶面间距等方面均有不同程度差别。前者富铊,低氯、高氟和硼,富轻硫同位素,相对贫稀土元素;后春富氯,低铊,高碘,富重硫同位素,相对贫碱土族元素。这些标型特征不仅有助于南华砷铊矿床进一步开发,而且有助于含雄黄的热液矿床,特别是As、Hg、Tl、Sb、Au等矿床的找矿勘探。  相似文献   
36.
During bedload movement by saltation, streamwise momentum is transferred from the ?ow to the saltating grains. When the grains collide with other grains on the bed or in the ?ow, streamwise momentum is reduced, and there is a decrease in streamwise ?ow velocity and an increase in ?ow resistance, herein termed bedload transport resistance fbt. Based on experiments in two ?umes with ?xed and mobile plane beds and previously published data, an equation is developed that may be used to predict fbt for both capacity and non‐capacity ?ows. The variables in this equation are identi?ed by dimensional analysis and the coef?cients are determined by non‐linear regression. This equation applies to rough turbulent open‐channel ?ows, where the relative submergence is between 1 and 20 and the entire sediment load moves by saltation. An investigation of the relative magnitudes of fbt and grain resistance fc suggests that where dimensionless shear stress θ is less than 1 and saltation is the dominant mode of bedload transport, fbt/fc increases with θ but never exceeds 1. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
37.
Soil pipes are common and important features of many catchments, particularly in semi‐arid and humid areas, and can contribute a large proportion of runoff to river systems. They may also signi?cantly in?uence catchment sediment and solute yield. However, there are often problems in ?nding and de?ning soil pipe networks which are located deep below the surface. Ground‐penetrating radar (GPR) has been used for non‐destructive identi?cation and mapping of soil pipes in blanket peat catchments. While GPR can identify subsurface cavities, it cannot alone determine hydrological connectivity between one cavity and another. This paper presents results from an experiment to test the ability of GPR to establish hydrological connectivity between pipes through use of a tracer solution. Sodium chloride was injected into pipe cavities previously detected by the radar. The GPR was placed downslope of the injection points and positioned on the ground directly above detected soil pipes. The resultant radargrams showed signi?cant changes in re?ectance from some cavities and no change from others. Pipe waters were sampled in order to check the radar results. Changes in electrical conductivity of the pipe water could be detected by the GPR, without data post‐processing, when background levels were increased by more than approximately twofold. It was thus possible to rapidly determine hydrological connectivity of soil pipes within dense pipe networks across hillslopes without ground disturbance. It was also possible to remotely measure travel times through pipe systems; the passing of the salt wave below the GPR produced an easily detectable signal on the radargram which required no post‐processing. The technique should allow remote sensing of water sources and sinks for soil pipes below the surface. The improved understanding of ?owpath connectivity will be important for understanding water delivery, solutional and particulate denudation, and hydrological and geomorphological model development. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
38.
Pore water pressures (positive and negative) were monitored for four years (1996–1999) using a series of tensiometer‐piezometers at increasing depths in a riverbank of the Sieve River, Tuscany (central Italy), with the overall objective of investigating pore pressure changes in response to ?ow events and their effects on bank stability. The saturated/unsaturated ?ow was modelled using a ?nite element seepage analysis, for the main ?ow events occurring during the four‐year monitoring period. Modelling results were validated by comparing measured with computed pore water pressure values for a series of representative events. Riverbank stability analysis was conducted by applying the limit equilibrium method (Morgenstern‐Price), using pore water pressure distributions obtained by the seepage analysis. The simulation of the 14 December 1996 event, during which a bank failure occurred, is reported in detail to illustrate the relations between the water table and river stage during the various phases of the hydrograph and their effects on bank stability. The simulation, according to monitored data, shows that the failure occurred three hours after the peak stage, during the inversion of ?ow (from the bank towards the river). A relatively limited development of positive pore pressures, reducing the effective stress and annulling the shear strength term due to the matric suction, and the sudden loss of the con?ning pressure of the river during the initial drawdown were responsible for triggering the mass failure. Results deriving from the seepage and stability analysis of nine selected ?ow events were then used to investigate the role of the ?ow event characteristics (in terms of peak stages and hydrograph characteristics) and of changes in bank geometry. Besides the peak river stage, which mainly controls the occurrence of conditions of instability, an important role is played by the hydrograph characteristics, in particular by the presence of one or more minor peaks in the river stage preceding the main one. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
39.
40.
A multi‐proxy approach was used to examine the geomorphic dynamics and environmental history of an upper deltaic ?oodplain tract in the Sacramento–San Joaquin Delta, California. Three long cores were collected from the McCormack–Williamson Tract (MWT) and these cores were analyzed for bulk density, loss‐on‐ignition, ?ne (clay and silt) content, Al concentration, magnetic susceptibility, pollen, and charcoal. Radiocarbon dates obtained for the cores were converted into calendar years and an age–depth model was constructed. Long‐term vertical accretion and sedimentation rates were estimated from the age–depth model. Cross‐core relations show that coarse sediment generally accumulates more rapidly and has greater magnetic susceptibility compared to ?ne sediment. Percentage ?ne and LOI data show a strong linear relationship that indicates ?ooding is the primary mechanism for the deposition of particular organic matter on the ?oodplain and that landscape wash load has contributed a highly consistent fraction of persistent organic matter averaging 5·5 per cent to the site. Down‐core grain size pro?les show two hydrological domains in the cores, namely millennial ?ne–coarse ?uctuations superimposed on general up‐core ?ning. Coarse sediment is viewed as channel or near‐channel overbank deposits, whereas ?ne deposits are considered to be distal overbank ?ood deposits. The coarse–?ne ?uctuations are indicative of changing depositional settings as channels migrated laterally across MWT, whereas the upward ?ning trend re?ects a combination of self‐limiting overbank deposition as ?oodplain elevation increased and decreasing competence as sea‐level rise reduced ?ood‐pulse energy slopes. MWT has been cross‐cut and incised numerous times in the past, only to have the channels abandoned and subsequently ?lled by ?ne sediment. The channels around MWT attained their modern con?guration about 4000 years ago. MWT likely came under tidal in?uence at about 2500 cal BP. Wetlands have recently developed on MWT, but they are inorganic sediment dominated. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号