首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   1篇
测绘学   2篇
大气科学   4篇
地球物理   8篇
地质学   18篇
综合类   4篇
自然地理   2篇
  2022年   4篇
  2021年   1篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   2篇
  2014年   5篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
31.
Multivariate time series modeling approaches are known as useful tools for describing, simulating, and forecasting hydrologic variables as well as their changes over the time. These approaches also have temporal and cross-sectional spatial dependence in multiple measurements. Although the application of multivariate linear and nonlinear time series approaches such as vector autoregressive with eXogenous variables (VARX) and multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) models are commonly used in financial and economic sciences, these approaches have not been extensively used in hydrology and water resources engineering. This study employed VARX and VARX–MGARCH approaches in modeling mean and conditional heteroscedasticity of daily rainfall and runoff records in the basin of Zarrineh Rood Dam, Iran. Bivariate diagonal VECH (DVECH) model, as a main type of MGARCH, shows how the conditional variance–covariance and conditional correlation structure vary over the time between residuals series of the fitted VARX. For this purpose, five model fits, which consider different combinations of twofold rainfall and runoff, including both upstream and downstream stations, have been investigated in the present study. The VARX model, with different orders, was applied to the daily rainfall–runoff process of the study area in each of these model fits. The Portmanteau test revealed the existence of conditional heteroscedasticity in the twofold residuals of fitted VARX models. Therefore, the VARX–DVECH model is proposed to capture the heteroscedasticity existing in the daily rainfall–runoff process. The bivariate DVECH model indicated both short-run and long-run persistency in the conditional variance–covariance matrix related to the twofold innovations of rainfall–runoff processes. Furthermore, the evaluation criteria for the VARX–DVECH model revealed the improvement of VARX model performance.  相似文献   
32.
Groundwater is considered as the most important water resource, especially in arid and semi-arid regions, so it is crucial to impede this source of water to be contaminated. One of the most common methods to assess groundwater vulnerability is DRASTIC method. However, the subjectivity existing in defining DRASTIC weights and ratings as well as inadaptability of the parameters involved in this method with special geology, hydrogeology, land use and climatic conditions have urged researchers to modify this method. In this paper, a new method combining a special type of the neural networks called Self-Organizing Map (SOM) and the traditional DRASTIC model resulting in the hybrid SOM-DRASTIC model is applied to modify and improve DRASTIC Model. The traditional DRASTIC method holds a summation among all negative effects of different factors contributing to vulnerability, while the proposed hybrid method is able of classifying the groundwater vulnerability and deriving the real relation existing between the DRASTIC parameters as the inputs and the vulnerability class as the output of the method. The vulnerability assessment process was performed on the Zayandeh-Rud river basin aquifers in Iran. The SOM-DRASTIC identified the northern parts of the study area as the most vulnerable areas with a drastically fractured structure, while the traditional DRASTIC ranked the western parts as the most vulnerable regions with a high rate of net recharge. The results demonstrate that the proposed method can be used by managers and decision-makers as an alternative robust tool for vulnerability-based classification and land use planning.  相似文献   
33.
Groundwater contamination is a well-known phenomenon, which occurs on local and regional scales in Izeh polje. The aims of this paper are investigation of the impact of human activities on the polje ecosystem, determination of the vulnerability of ground water, and to solve environmental problems. Nitrate contamination of groundwater in the Izeh polje was predicted using a solute transport model. The nitrate concentration in groundwater in most parts of Izeh polje is greater than maximum concentration permissible for drinking water, i.e., 45 mg/l. The main source of nitrate in the eastern underground areas of Izeh city is the domestic sewage. Bacterial pollution of shallow ground water in Izeh polje is severe and widespread. About 45% of ground water samples in May and September 2001 have positive MPN coliforms. Infiltration of polluted surface waters and decrease of water table depth, have lead to bacterial pollution of 80% of ground water samples in January 2002. The northeast, south and southwest areas of Izeh polje have higher pollution potential rather than its middle parts. The aquifer vulnerability indices in the middle, eastern, and northern parts of the polje are moderately lower as a result of decreased sediment size of the aquifer. The pollution in the polje depends on the amount and presence of pollutants. If they do exist, the possibility of pollution is considerable due to the coarseness of materials and shallow depth of groundwater table.  相似文献   
34.
Debris flow is one of the major secondary mountain hazards following the earthquake. This study explores the dynamic initiation mechanism of debris flows based on the strength reduction of soils through static and dynamic triaxial tests. A series of static and dynamic triaxial tests were conducted on samples in the lab. The samples were prepared according to different grain size distribution, degree of saturation and earthquake magnitudes. The relations of dynamic shear strength, degree of saturation, and number of cycles are summarized through analyzing experimental results. The findings show that the gravelly soil with a wide and continuous gradation has a critical degree of saturation of approximately 87%, above which debris flows will be triggered by rainfall, while the debris flow will be triggered at a critical degree of saturation of about 73% under the effect of rainfall and earthquake(M>6.5). Debris flow initiation is developed in the humidification process, and the earthquake provides energy for triggering debris flows. Debris flows are more likely to be triggered at the relatively low saturation under dynamic loading than under static loading. The resistance of debris flow triggering relies more on internal frication angle than soil cohesion under the effect of rainfall and earthquake. The conclusions provide an experimental analysis method for dynamic initiation mechanism of debris flows.  相似文献   
35.
Theoretical and Applied Climatology - Temperature and precipitation are the basic elements of climate, and their variation can change the water demands of different uses. In this study, the trend...  相似文献   
36.
Barzkar  Ali  Najafzadeh  Mohammad  Homaei  Farshad 《Natural Hazards》2022,110(3):1931-1952
Natural Hazards - Due to a wide range of socio-economic losses caused by drought over the past decades, having a reliable insight of drought properties plays a key role in monitoring and...  相似文献   
37.
ABSTRACT

The trends in hydrological and climatic time series data of Urmia Lake basin in Iran were examined using the four different versions of the Mann-Kendall (MK) approach: (i) the original MK test; (ii) the MK test considering the effect of lag-1 autocorrelation; (iii) the MK test considering the effect of all autocorrelation or sample size; and (iv) the MK test considering the Hurst coefficient. Identification of hydrological and climatic data trends was carried out at monthly and annual time scales for 25 temperature, 35 precipitation and 35 streamflow gauging stations selected from the Urmia Lake basin. Mann-Kendall and Pearson tests were also applied to explore the relationships between temperature, precipitation and streamflow trends. The results show statistically significant upward and downward trends in the annual and monthly hydrological and climatic variables. The upward trends in temperature, unlike streamflow, are much more pronounced than the downward trends, but for precipitation the behaviour of trend is different on monthly and annual time scales. Furthermore, the trend results were affected by the different approaches. Specifically, the number of stations showing trends in hydrological and climatic variables decreased significantly (up to 50%) when the fourth test was considered instead of the first and the absolute value of the Z statistic for most of the time series was reduced. The results of correlations between streamflow and climatic variables showed that the streamflow in Urmia Lake basin is more sensitive to changes in temperature than those of precipitation. The observed decreases in streamflow and increases in temperature in the Urmia Lake basin in recent decades may thus have serious implications for water resources management under the warming climate with the expected population growth and increased freshwater consumption in this region.
Editor Z. W. Kundzewicz; Associate editor Q. Zhang  相似文献   
38.
The slope stability of levees during hurricane overtopping conditions involving storm surge and wind generated wave action is an important aspect to assess the safety of earthen levees. A comprehensive slope stability investigation was conducted in this study for an earthen levee subjected to full-scale overtopping scenarios, including storm surge only overflow, wave only overtopping, and combined wave and surge overtopping conditions. The crest and the landside of the levee were strengthened by high performance turf reinforcement mat (HPTRM) to protect against overtopping erosion. A conceptual model for HPTRM strengthened levee as well as a methodology for analysis and incorporation of various overtopping flow conditions in levee slope stability is presented. The findings of this study indicate that HPTRM strengthening of the levee improves the stability of the levee significantly during wave only as well as combined storm surge and wave overtopping conditions. However, during the storm surge conditions, the factor of safety is only improved slightly as a result of strengthening of the levee by HPTRM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号