首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   1篇
  国内免费   2篇
地球物理   29篇
地质学   3篇
  2013年   2篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2006年   8篇
  2005年   1篇
  2004年   7篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有32条查询结果,搜索用时 0 毫秒
31.
Until quite recently our understanding of the basic mechanical process responsible for earthquakes and faulting was not well known. It can be argued that this was partly a consequence of the complex nature of fracture in crust and in part because evidence of brittle phenomena in the natural laboratory of the earth is often obliterated or obscured by other geological processes. While it is well understood that the spatial and temporal complexity of earthquakes and the fault structures emerge from geometrical and material built-in heterogeneities, one important open question is how the shearing becomes localized into a band of intense fractures. Here we address these questions through a numerical approach of a tectonic plate by considering rockmass heterogeneity both in microscopic scale and in mesoscopic scale. Numerical simulations of the progressive failure leading to collapse under long-range slow driving forces in the far-field show earthquake-like rupture behavior. En Echelon crack-arrays are reproduced in the numerical simulation. It is demonstrated that the underlying fracturing induced acoustic emissions (or seismic events) display self-organized criticality—from disorder to order. The seismic cycles and the geometric structures of the fracture faces, which are found greatly depending on the material heterogeneity (especially on the macroscopic scale), agree with that observed experimentally in real brittle materials. It is concluded that in order to predict a main shock, one must have extremely detailed knowledge on very minor features of the earth's crust far from the place where the earthquake originated. If correct, the model proposed here seemingly provides an explanation as to why earthquakes to date are not predicted so successfully. The reason is not that we do not understand earthquake mechanisms very well but that we still know little about our earth's crust.  相似文献   
32.
— Based on the theory of LURR and its recent development, spatial and temporal variation of Y/Y c (value of LURR/critical value of LURR) in the Southern California region during the period from 1980 through March, 2001 was studied. According to the previous study on the fault system and stress field in Southern California, we zoned the Southern California region into 11 parts in each of which the stress field is almost uniform. With the time window of one year, time moving step of three months, space window of a circle region with a radius of 100 km and space moving step of 0.25 degree in latitude and longitude direction, the evolution of Y/Y c were snapshot. The scanning results show that obvious Y/Y c anomalies occurred before 5/6 of strong earthquakes considered with a magnitude of 6.5 or greater. The critical regions of Y/Y c are near the epicenters of the strong earthquakes and the Y/Y c anomalies occur months to years prior to the earthquakes. The tendency of earthquake occurrence in the California region is briefly discussed on the basis of the examination of Y/Y c .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号