首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   2篇
测绘学   2篇
大气科学   3篇
地球物理   7篇
地质学   15篇
天文学   2篇
自然地理   2篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   2篇
  2018年   6篇
  2017年   5篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2011年   1篇
  2010年   1篇
  2004年   1篇
排序方式: 共有31条查询结果,搜索用时 31 毫秒
31.
The problem of the through-soil coupling of structures has puzzled the researchers in the field for a long while, especially regarding the varied performance of identical, adjacent buildings in earthquakes. The phenomenon of structure-soil-structure interaction (SSSI) that has often been overlooked is recently being recognized: The possible effects in urban regions are yet to be thoroughly quantified. In this respect, the goal of this work was to rigorously investigate the interacting effects of adjacent buildings in a two-dimensional setting. Detailed finite element models of 5-, 15-, and 30-story structures, realistically designed, were used in forming building clusters on the viscoelastic half-space. Perfectly matched layers were used to properly define the half-space boundaries. The interaction of the structure and the soil medium because of the presence of spatially varying ground motion on the boundary of excavated region was considered. The effects of the foundation material and the distance between adjacent buildings on the structural behavior of the neighboring buildings were investigated using drift ratios and base shear quantities as the engineering demand parameters of interest. The effects of SSSI, first investigated in the frequency domain, was then quantified in the time domain using suites of appropriate ground motions in accordance with the soil conditions, and the results were compared with the counterpart SSI solution of a single building. The results showed that, for identical low-rise structures, the effects of SSSI were negligible. Yet, neglecting SSSI for neighboring closely spaced high-rise structures or building clusters with a large stiffness contrast was shown to lead to a considerable underestimation of the true seismic demands even compared with solutions obtained using the rigid base assumption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号