首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   803篇
  免费   153篇
  国内免费   115篇
测绘学   2篇
大气科学   1篇
地球物理   329篇
地质学   672篇
海洋学   14篇
综合类   29篇
自然地理   24篇
  2023年   2篇
  2022年   12篇
  2021年   27篇
  2020年   20篇
  2019年   19篇
  2018年   34篇
  2017年   35篇
  2016年   27篇
  2015年   38篇
  2014年   50篇
  2013年   98篇
  2012年   40篇
  2011年   39篇
  2010年   36篇
  2009年   63篇
  2008年   85篇
  2007年   60篇
  2006年   63篇
  2005年   55篇
  2004年   37篇
  2003年   41篇
  2002年   20篇
  2001年   26篇
  2000年   28篇
  1999年   19篇
  1998年   17篇
  1997年   22篇
  1996年   10篇
  1995年   9篇
  1994年   8篇
  1993年   7篇
  1992年   10篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1978年   1篇
  1973年   1篇
排序方式: 共有1071条查询结果,搜索用时 15 毫秒
31.
This study investigated non‐Darcian flow to a well in a leaky aquifer considering wellbore storage and a finite‐thickness skin. The non‐Darcian flow is described by the Izbash equation. We have used a linearization procedure associated with the Laplace transform to solve such a non‐Darcian flow model. Besides, the Stehfest method has been used to invert the Laplace domain solutions for the drawdowns. We further analyzed the drawdowns inside the well for different cases. The results indicated that a smaller BD results in a smaller drawdown at late times and the leakage has little effect on the drawdown inside the well at early times, where BD is a dimensionless parameter reflecting the leakage. We have also found that the flow for the negative skin case approaches the steady‐state earlier than that for the positive skin. In addition, the drawdown inside the well with a positive skin is larger than that without skin effect at late times, and a larger thickness of the skin results in a greater drawdown inside the well at late times for the positive skin case. A reverse result has been found for the negative skin case. Finally, we have developed a finite‐difference solution for such a non‐Darcian flow model and compared the numerical solution with the approximate analytical solution. It has been shown that the linearization procedure works very well for such a non‐Darcian flow model at late times, and it underestimates the drawdowns at early times. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
32.
The main aim of this study is the experimental analysis of the hydrogeological behaviour of the Mt. Prinzera ultramafic massif in the northern Apennines, Italy. The analysed multidisciplinary database has been acquired through (a) geologic and structural survey; (b) geomorphologic survey; (c) hydrogeological monitoring; (d) physico‐chemical analyses; and (e) isotopic analyses. The ultramafic medium is made of several lithological units, tectonically overlapped. Between them, a low‐permeability, discontinuous unit has been identified. This unit behaves as an aquitard and causes a perched groundwater to temporary flow within the upper medium, close to the surface. This perched groundwater flows out along several structurally controlled depressions, and then several high‐altitude temporary springs can be observed during recharge, together with several perennial basal (i.e., low altitude) springs, caused by the compartmentalisation of the system because of high‐angle tectonic discontinuities.  相似文献   
33.
Abstract

Abstract The construction of the Gabcikovo hydropower plant and the diversion of the Danube River over 25 km into an artificial channel in 1992 influenced the groundwater regime of the region considerably. Statistical and geostatistical methods are used to quantify changes of different groundwater characteristics on the Hungarian side of the river based on observations in the time period 1960–2000. External drift kriging was used to interpolate groundwater levels and the other related variables. While mean groundwater levels did not change appreciably, there are significant changes in the variability. Standard deviations of the groundwater levels and the amplitude of the annual cycle decreased near the old river bed of the Danube. The water-level fluctuations of the Danube have a decreased influence on the groundwater dynamics. Interrelationships between water levels in wells have also changed.  相似文献   
34.
Cap-rock seals can be divided genetically into those that fail by capillary leakage (membrane seals) and those whose capillary entry pressures are so high that seal failure preferentially occurs by fracturing and/or wedging open of faults (hydraulic seals). A given membrane seal can trap a larger oil column than gas column at shallow depths, but below a critical depth (interval), gas is more easily sealed than oil. This critical depth increases with lower API gravity, lower oil GOR and overpressured conditions (for the gas phase). These observations arise from a series of modelling studies of membrane sealing and can be conveniently represented using pressure/ depth (P/D) profiles through sealed hydrocarbon columns. P/D diagrams have been applied to the more complex situation of the membrane sealing of a gas cap underlain by an oil rim; at seal capacity, such a two-phase column will be always greater than if only oil or gas occurs below the seal.These conclusions contrast with those for hydraulic seals where the seal capacity to oil always exceeds that for gas. Moreover, a trapped two-phase column, at hydraulic seal capacity will be less than the maximum-allowed oil-only column, but more than the maximum gas-only column. Unlike membrane seals, hydraulic seal capacity should be directly related to cap-rock thickness, in addition to the magnitude of the minimum effective stress in the sealing layer and the degree of overpressure development in the sequence as a whole.Fault-related seals are effectively analogous to membrane cap-rocks which have been tilted to the angle of the fault plane. Consequently, all of the above conclusions derived for membrane cap-rocks apply to both sealing faults sensu stricto (fault plane itself seals) and juxtaposition faults (hydrocarbon trapped laterally against a juxtaposed sealing unit). The maximum-allowed two-phase column trapped by a sealing fault is greater than for equivalent oil-only and gas-only columns, but less than that predicted for a horizontal membrane cap-rock under similar conditions. Where a two-phase column is present on both sides of a sealing fault (which is at two-phase seal capacity), a deeper oil/water contact (OWC) in one fault block is associated with a deeper gas/oil contact (GOC) compared with the adjacent fault block. If the fault seal is discontinuous in the gas leg, however, the deeper OWC is accompanied by a shallower GOC, whereas a break in the fault seal in the oil leg results in a common OWC in both fault blocks, even though separate GOC's exist. Schematic P/D profiles are provided for each of the above situations from which a series of fundamental equations governing single- and two-phase cap-rock and fault seal capacities can be derived. These relationships may have significant implications for exploration prospect appraisal exercises where more meaningful estimates of differential seal capacities can be made.The membrane sealing theory developed herein assumes that all reservoirs and seals are water-wet and no hydrodynamic flow exists. The conclusions on membrane seal capacity place constraints on the migration efficiency of gas along low-permeabiligy paths at depth where fracturing, wedging open of faults and/or diffusion process may be more important. Contrary to previous assertions, it is speculated that leakage of hydrocarbons through membrane seals occurs in distinct pulses such that the seal is at or near the theoretically calculated seal capacity, once this has been initially attained.Finally, the developed seal theory and P/D profile concepts are applied to a series of development geological problems including the effects of differential depletion, and degree of aquifer support, on sealing fault leakage, and the evaluation of barriers to vertical cross-flow using RFT profiles through depleted reservoirs. It is shown that imbibition processes and dynamic effects related to active cross-flow across such barriers often preclude quantitative analysis and solution of these problems for which simulation studies are usually required.  相似文献   
35.
结合甘肃省灵台县安家庄煤矿地下水环境影响评价实例,建立了评价区水文地质概念模型,并基于Visual MODFLOW对评价区地下水进行了数值模拟计算和验证;预报了设计开采条件下研究区不同含水层的地下水水位。预报结果表明:矿坑排水使得煤层所在含水层出现疏干现象,并且疏干范围随着开采范围的增加而不断扩大;在煤矿开采作用下,随着模拟时间的延续,煤系层上覆白垩系洛河组—宜君组含水层地下水位降落漏斗的范围及地下水位下降幅度不断增大,但降落漏斗的范围基本上不超过采空区范围;煤矿开采对白垩系环河组含水层无影响,至矿区开采期结束,未引起含水层水位下降;对上部孔隙、裂隙潜水含水层也无影响,至矿区开采期结束未引起含水层水位下降。  相似文献   
36.
隔水边界附近的承压含水层,即半无限区域的承压含水层参数的准确求取对于特定地段的地下水资源量计算具有重要意义。以高密市柴沟镇小于家庄抽水试验为例,详细阐述了隔水边界附近的承压含水层参数求取过程,并对结果进行较为详尽的讨论。  相似文献   
37.
张宝庄铁矿矿床位于当地侵蚀基准面以下,呈似层状,倾角多在45°以上,埋深20~888m。对矿区3个主要含水层及其之间的水力联系进行分析,这3个含水层分别为第四纪全新世冲洪积孔隙水含水层、基岩风化裂隙水含水层和泰山岩群变质岩构造裂隙水含水层,各含水层之间水力联系较弱。另外还研究了矿床充水因素、预测矿床正常涌水量和最大涌水量,在此基础上划分该矿区水文地质条件为中等类型。  相似文献   
38.
Zekai Şen  Essam Wagdani 《水文研究》2008,22(12):1788-1795
In arid‐region wadis, groundwater storage lies within shallow Quaternary alluvium deposits, which are connected with the present‐day hydrological cycle and, therefore, are replenished due to occasional runoff and flash flood occurrences. The groundwater resources are precious in these environments; therefore, their potentiality must be assessed with care in the best manner. The aquifer potentiality is calculated after the storativity and transmissivity parameter estimations, which require rather long‐duration field tests with restrictive assumptions in the theoretical model developments, such as the homogeneity and isotropy. It is the main purpose of this paper to expose the fundamentals of the slope‐matching procedure (SMP) and its application for short‐duration field tests in arid‐region aquifers. In this manner, the subsurface hydrogeological behaviours of the bored land pieces at and around the well locations are prospected in a detailed and refined manner. It is shown that in many cases the classical techniques are appropriate, inconvenient and inapplicable with conclusive reliable results and conclusions. The application of the SMP is presented for some aquifer tests from the central western part of the Kingdom of Saudi Arabia. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
39.
This paper evaluates the feasibility of using an artificial neural network (ANN) methodology for estimating the groundwater levels in some piezometers placed in an aquifer in north‐western Iran. This aquifer is multilayer and has a high groundwater level in urban areas. Spatiotemporal groundwater level simulation in a multilayer aquifer is regarded as difficult in hydrogeology due to the complexity of the different aquifer materials. In the present research the performance of different neural networks for groundwater level forecasting is examined in order to identify an optimal ANN architecture that can simulate the piezometers water levels. Six different types of network architectures and training algorithms are investigated and compared in terms of model prediction efficiency and accuracy. The results of different experiments show that accurate predictions can be achieved with a standard feedforward neural network trained usung the Levenberg–Marquardt algorithm. The structure and spatial regressions of the ANN parameters (weights and biases) are then used for spatiotemporal model presentation. The efficiency of the spatio‐temporal ANN (STANN) model is compared with two hybrid neural‐geostatistics (NG) and multivariate time series‐geostatistics (TSG) models. It is found in this study that the ANNs provide the most accurate predictions in comparison with the other models. Based on the nonlinear intrinsic ANN approach, the developed STANN model gives acceptable results for the Tabriz multilayer aquifer. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
40.
A mathematical model describing the constant pumping is developed for a partially penetrating well in a heterogeneous aquifer system. The Laplace‐domain solution for the model is derived by applying the Laplace transforms with respect to time and the finite Fourier cosine transforms with respect to vertical co‐ordinates. This solution is used to produce the curves of dimensionless drawdown versus dimensionless time to investigate the influences of the patch zone and well partial penetration on the drawdown distributions. The results show that the dimensionless drawdown depends on the hydraulic properties of the patch and formation zones. The effect of a partially penetrating well on the drawdown with a negative patch zone is larger than that with a positive patch zone. For a single‐zone aquifer case, neglecting the effect of a well radius will give significant error in estimating dimensionless drawdown, especially when dimensionless distance is small. The dimensionless drawdown curves for cases with and without considering the well radius approach the Hantush equation (Advances in Hydroscience. Academic Press: New York, 1964) at large time and/or large distance away from a test well. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号