首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1971篇
  免费   426篇
  国内免费   423篇
测绘学   334篇
大气科学   247篇
地球物理   625篇
地质学   1031篇
海洋学   193篇
天文学   61篇
综合类   181篇
自然地理   148篇
  2024年   4篇
  2023年   22篇
  2022年   43篇
  2021年   67篇
  2020年   62篇
  2019年   81篇
  2018年   76篇
  2017年   91篇
  2016年   87篇
  2015年   111篇
  2014年   116篇
  2013年   101篇
  2012年   144篇
  2011年   141篇
  2010年   128篇
  2009年   127篇
  2008年   117篇
  2007年   139篇
  2006年   132篇
  2005年   110篇
  2004年   103篇
  2003年   79篇
  2002年   86篇
  2001年   57篇
  2000年   78篇
  1999年   82篇
  1998年   49篇
  1997年   45篇
  1996年   49篇
  1995年   53篇
  1994年   50篇
  1993年   43篇
  1992年   34篇
  1991年   27篇
  1990年   15篇
  1989年   15篇
  1988年   17篇
  1987年   16篇
  1986年   6篇
  1985年   8篇
  1984年   3篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
排序方式: 共有2820条查询结果,搜索用时 15 毫秒
31.
马亮 《地震工程学报》2019,41(3):763-769
地磁低点时间在空间分布上的主要特征是随着经度变化而变化。为了求出这种变化关系的解析式,首先使用国家地磁台网的数据计算甘肃省近三年13个地磁台站的低点时间序列和低点时间的期望,并绘制了低点时间序列的频次分布图和概率密度曲线;然后对低点时间与台站经度的关系做线性回归,并指出这个线性回归方程应无限趋近于"格林尼治时间-经度"关系式。文章第一次提出台站经度与地磁Z分量低点时间的关系式,并提出它的趋近方程。各台站低点时间的期望就是地磁低点时间的正常背景值,它是判定地磁低点时间异常与否的参考标准。本文的工作完善和发展了丁鉴海先生的地磁低点位移法。  相似文献   
32.
In order to acquire a better velocity structure of the crustal and uppermost mantle beneath Shanxi area, we obtain the group and phase velocities of Rayleigh wave of the periods 8s to 50s in Shanxi and adjacent area using ambient seismic noise recorded at 216 broad-band stations. All available vertical-component time series for 2014 have been cross-correlated to yield estimates of empirical Rayleigh wave Green's function. Group and phase velocity dispersion curves for Rayleigh wave are measured for each interstation path by applying frequency-time analysis. It describes finer velocity structure of the crust and upper mantle in Shanxi, which reflects the geological structure characteristics at different depths. The resolution is within 50km and the resolution of part periods can reach 40km.The Rayleigh wave group and phase speed maps at short periods(8~18s and 10~22s)show clear correlations with shallow geological structures. Mountain areas on both sides of Shanxi depression zone show apparent high-velocity anomaly, except for low-velocity anomaly in the Taiyuan Basin, Linfen-Yuncheng Basin and Weihe Basin. Especially, the areas of Youyu County-Pianguan County-Kelan County-Shuozhou City and Jingle County-Lishi District of Lüliang City in Lüliang Mountains, and Yu County-Fuping County-Yi County and Yangcheng County-Licheng County in Taihang Mountains, present higher velocity anomaly. In addition, the velocity is lowest in the Weihe Basin, and the amplitude of low velocity decreases gradually from the south to the north of the basins in Shanxi, which probably is related to the process of gradual stretching and development of the Shanxi rift zone from the southwest to the northeast. The obvious velocity difference across the latitude of 38°N exists at 18~30s period of phase and 24~35s period of group velocity maps, which is probably related to the deep and shallow Moho depth variation in the south and north of Shanxi and the suture zone of ancient blocks including "hard" southern block and "soft" northern block. At the same time, the research result of receiver function reveals that partial melting of the lower crust occurs in the northern Taihang Mountains, while the southern section remains stable(Poisson's ratio is above 0.3 in the northern Taihang Mountains and 0.25~0.26 in the southern section). The phase velocity map at 30~50s period clearly shows NW velocity gradient belt, and the low velocity anomaly in the northeast side may be related to Cenozoic volcanism. Meanwhile, the eastern border of Ordos block is the western faults of central basins in Shanxi depression zone. However, some research results indicate that the above border is Lishi Fault in the surface, inferring that the Ordos block shows a shape of wide in the upper and narrow in the lower part from the surface to deep. The Datong volcanic area at 18~45s period of phase and 24~35s period of group velocity maps shows low velocity of trumpet shape from shallow to deep, related to the upwelling of hot material from lower mantle in the Cenozoic causing a large area of intense magmatic activity. It indicates the more specific upwelling channel of Datong volcanoes simultaneously.  相似文献   
33.
On July 31st, 2016, an earthquake of MS5.4 occurred in Cangwu County, Guangxi Zhuang Autonomous Region, which is the first MS ≥ 5.0 earthquake in coastal areas of southern China in the past 17a. The moderate earthquake activities have come into a comparatively quiet period in coastal areas of southern China for decades, so the study about the Cangwu MS5.4 earthquake is very important. However, differernt research institutions and scholars have got different results for the focal depth of the Cangwu MS5.4 earthquake. For this reason, we further measured the focal depth by using CAP method and sPL phase method. sPL phase was first put forward by Chong in 2010. It is often observed between P and S wave of continental earthquakes with epicentral distance of about 30km to 50km. The energy of sPL phase is mainly concentrated on the radial component. Arrival time difference between sPL phase and direct P wave is insensitive to epicentral distancs, but increases almost linearly with the increase of focal depth. Based on these characteristics and advantages, sPL phase method is chosen to measure the focal depth of Cangwu MS5.4 earthquake in the paper. First of all, we selected the broadband waveform data through seismic stations distributed mainly in Guangxi and adjacent provinces from Data Management Centre of China National Seismic Network and Guangxi Earthquake Networks Center. And an appropriate velocity model of Cangwu area was constructed by the teleseismic receiver function method. Then, the focal mechanism and focal depth of Cangwu MS5.4 earthquake were determined by using the CAP(Cut and Paste)method. Next, we compared the synthetic waveforms simulated by F-K forward method of different focal depth models with the actual observed waveforms. According to the difference of arrival times between sPL and Pg phases, we finally obtained the focal depth of Cangwu earthquake. The results show that the focal depth is 11km measured by CAP method and 9km by sPL phase method. Based on the focal mechanism solution, isoseismal shapes, aftershocks distributions and investigation on spot, we conclude that the Cangwu MS5.4 earthquake is a left-lateral strike-slip earthquake which occurred in the upper crust. Our preliminary analysis considers that the seismogenic structure of Cangwu earthquake is a north-northwest branch fault, and the control fault of this earthquake is the Hejie-Xiaying Fault.  相似文献   
34.
On July 31th, 2016, a magnitude 5.4 earthquake struck Cangwu Country, Guangxi Zhuang Autonomous Region, it was the largest earthquake recorded by Guangxi Seismological Network since it set up. The number of people affected by the earthquake had reached 20 000, and the direct economic losses caused by the earthquake were nearly 100 million Yuan. After the earthquake, USGS provided a global earthquake catalog showing that the focal depth of Cangwu earthquake was about 24.5km. However, the result given by the Global Centroid Moment Tensor showed the focal depth of this earthquake was 15.6km. However, the result obtained by Xu Xiaofeng et al. using CAP method was 5.1km. It was clear that the focal depths of Cangwu earthquake given by different institutions were quite different from each other. However, accurate focal depth of the earthquake has important significance for exploring the tectonic mechanism near the epicenter, so it is necessary to further determine the more accurate depth of the Cangwu earthquake. In order to further accurately determine the focal depth of Cangwu earthquake, we used the global search method for travel-time residual to calculate the focal depth of this earthquake and its error range, based on the regional velocity model, which is a one-dimensional velocity model of the Xianggui tectonic belt produced by the comprehensive geophysical profile. Then, we inverted the focal mechanism of this earthquake with the CAP method. Based on this, the focal depth of Cangwu MS5.4 earthquake was further determined by the method of the Rayleigh surface wave amplitude spectrum and the sPL phase, respectively. Computed results reveal that the focal depth of this earthquake and its error range from the travel-time residual global search method is about(13±3)km, the focal depth inverted by CAP method is about 10km, the focal depth from sPL phase is about 10km, and the focal depth from Rayleigh surface wave amplitude spectrum is about 9~10km. Finally, we confirmed that the focal depth of Cangwu MS5.4 earthquake is about 10km, which indicates that this earthquake still occurred in the upper crust. In the case of low network density, the sPL phase and Rayleigh wave amplitude spectrum recorded by only 1 or 2 broadband stations could be used to obtain more accurate focal depth. The focal depth's accuracy of Cangwu MS5.4 earthquake in the USGS global earthquake catalog has yet to be improved. In the future, we should consider the error of the source parameters when using the USGS global earthquake catalog for other related research.  相似文献   
35.
为了更好地确定2017年8月8日九寨沟M_(S )7.0地震震源深度其发震机理,利用四川、甘肃和青海区域地震台网的观测波形数据,采用多种方法研究了此次地震的震源深度。首先,采用gCAP方法反演了九寨沟M_(S )7.0地震的震源机制解和矩心深度,结果显示,节面Ⅰ走向243°/倾角87°/滑动角-158°,节面Ⅱ走向151°/倾角68°/滑动角-3°,矩震级为M_(W )6.5,矩心深度为8 km;然后,采用ISOLA近震全波形方法反演了此次地震的震源机制解,反演结果与gCAP方法结果相差不大,矩心深度为7 km;最后,通过sPn震相与Pn震相之间的走时差测定此次地震初始破裂震源深度,结果显示深度约为12 km。研究表明,九寨沟M_(S )7.0地震的矩心深度为7—8 km,初始破裂深度约为12 km。  相似文献   
36.
使用GRACE卫星星载GPS观测数据,研究地面获取的先验PCV模型和利用残差法估计的在轨PCV模型对低轨卫星精密定轨的影响,并采用GFZ精密轨道对比和SLR检核手段对其进行评估。结果表明,使用先验PCV模型会降低GRACE卫星定轨精度,相反利用在轨PCV模型可以提高定轨精度,提升数量级可达mm级。
  相似文献   
37.
中国探月3期任务中,月球交会对接技术是任务成功的重要保障.利用嫦娥3号(CE03)绕月飞行的VLBI (Very Long Baseline Interferometry)时延数据,模拟仿真绕月交会对接过程中,同波束VLBI观测模式下,差分群时延的变化情况.仿真结果显示,在远程导引段,轨道器和上升组合体轨道距离保持100 km,持续半小时,差分群时延很好地反映了两者的轨道信息,可以用于定轨定位;自主控制段,上升组合体靠近轨道器,在轨道距离从5 km减小到20 m过程中,上升组合体加速追赶轨道器时,差分群时延快速趋近于0,上升组合体减速远离轨道器时,差分群时延绝对值快速变大.最后,利用嫦娥3号奔月段同时发射两个DOR (Differential One-Ranging)信号的VLBI时延数据,计算差分相时延,初步展示了月球交会对接过程中同波束VLBI差分相时延的误差情况.  相似文献   
38.
We discuss a strategy capable of a quantitative long-term monitoring of water saturation and volume variation of light non-aqueous phase liquids in the soil. The goal was reached monitoring a controlled sand cell contaminated with classical gasoline over 124 days, using geophysical methods such as electrical resistivity tomography, induced polarization and ground penetrating radar. We show that empirical relations, linking the water saturation to the physical parameters measured as resistivity from electrical resistivity tomography and travel time from georadar with advanced processing, are good tools for this purpose. The consistence of the proposed process is validated by both good overlap of results carried out from electrical resistivity tomography and georadar and theoretical models simulating the actual experiment.  相似文献   
39.
From the HISTRHONE database we extracted 1483 hydro-meteorological events from AD 1300 to 2000 that occurred in the Lower Rhône Valley, France. Daily heights of the Rhône River at Beaucaire and Arles are also available, from 1816 and 1829, respectively. A total of 517 floods were divided into three categories and a synthetic frequency severity index (FSI) was computed. Running averages of 11 and 31 years show a succession of poor and rich flood fluctuations. Extreme floods tripled in the second half of the period (1650–2000). Singular spectrum analysis isolates a dominant irregular component (main positive anomalies in 1450–1580, around 1700, late 18th century, and most of the 20th century). We focus on the 17th century, with rare flooding events between two secular so-called “hyper phases”, i.e. frequent and/or severe floods. We also recorded 173 episodes of ice in the river, during the Little Ice Age.  相似文献   
40.
A new occurrence of kyanite eclogite in the Pirin Mountains of southwestern Bulgaria within the rocks belonging to the Obidim Unit of the Rhodope Metamorphic Complex is presented. This eclogite provides important information about the peak–pressure conditions despite strong thermal overprint at low pressure. Textural relationships, phase equilibrium modelling and conventional geothermobarometry were used to constrain the metamorphic evolution. Garnet porphyroblasts with inclusions of omphacite (up to 43 mol.% Jd), phengite (up to 3.5 Si p.f.u.), kyanite, polycrystalline quartz, pargasitic amphibole, zoisite and rutile in the Mg‐rich cores (XMg = 0.44–0.46) record a prograde increase in P–T conditions from ~2.5 GPa and 650 °C to ~3 GPa and 700–750 °C. Maximum pressure values fall within the stability field of coesite. During exhumation, the peak–pressure assemblage garnet + omphacite + phengite + kyanite was variably overprinted by a lower pressure one forming symplectitic textures, such as diopside + plagioclase after omphacite and biotite + plagioclase after phengite. The development of spinel (XMg = 0.4–0.45) + corundum + anorthite assemblage in the kyanite‐bearing domains at ~1.1 GPa and 800–850 °C suggests a thermal overprint in the high‐pressure granulite facies stability field. This thermal event was followed by cooling at ~0.8 GPa under amphibolite facies conditions; retrograde kelyphite texture involving plagioclase and amphibole was developed around garnet. Our results add to the already existing evidence for ultra high pressure (UHP) metamorphism in the Upper Allochthon of the Rhodope Metamorphic Complex as in the Kimi Unit and show that it is more widespread than previously known. Published age data and field structural relations suggest that the Obidim Unit represents Variscan continental crust involved into the Alpine nappe edifice of the Rhodopes and that eclogite facies metamorphism was Palaeozoic, in contrast to the Kimi Unit where age determinations suggest a Jurassic or Cretaceous age for UHP metamorphism. This implies that UHP metamorphism in the Upper Allochthon of the Rhodopes may have occurred twice, during Alpine and pre‐Alpine orogenic events, and that two independent HP/UHP provinces of different age overlap in this area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号