首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   299篇
  免费   12篇
  国内免费   28篇
测绘学   2篇
大气科学   1篇
地球物理   19篇
地质学   78篇
海洋学   2篇
天文学   227篇
综合类   3篇
自然地理   7篇
  2022年   5篇
  2021年   6篇
  2020年   4篇
  2019年   10篇
  2018年   3篇
  2017年   6篇
  2016年   10篇
  2015年   4篇
  2014年   8篇
  2013年   8篇
  2012年   6篇
  2011年   64篇
  2010年   39篇
  2009年   25篇
  2008年   20篇
  2007年   19篇
  2006年   24篇
  2005年   18篇
  2004年   17篇
  2003年   13篇
  2002年   10篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   5篇
  1993年   2篇
  1992年   3篇
排序方式: 共有339条查询结果,搜索用时 15 毫秒
331.
F. Cipriani  F. Leblanc  R.E. Johnson 《Icarus》2011,212(2):643-648
We simulate space weathering of Phobos’ surface due to both sputtering by solar wind ions (H+ and He2+) and planetary protons, and surface material vaporization by micrometeoroids impact. Assuming an Iron-rich composition of Phobos’ regolith, we find that densities of neutral species (Fe, O, Al, Ca, Mg, Na) in the martian environment are in the range (10−4-10−1 cm−3), and observe an ejecta disk with a radius of 6 martian radii in the equatorial plane and a thickness of 3 martian radii in the perpendicular plane. In order to determine the observability of such species from space based instruments, we also estimate their solar scattering emission line intensities. We conclude that Magnesium would be the only potential candidate suitable for spectral detection.  相似文献   
332.
We model the cratering of the Moon and terrestrial planets from the present knowledge of the orbital and size distribution of asteroids and comets in the inner Solar System, in order to refine the crater chronology method. Impact occurrences, locations, velocities and incidence angles are calculated semi-analytically, and scaling laws are used to convert impactor sizes into crater sizes. Our approach is generalizable to other moons or planets. The lunar cratering rate varies with both latitude and longitude: with respect to the global average, it is about 25% lower at (±65°N, 90°E) and larger by the same amount at the apex of motion (0°N, 90°W) for the present Earth-Moon separation. The measured size-frequency distributions of lunar craters are reconciled with the observed population of near-Earth objects under the assumption that craters smaller than a few kilometers in diameter form in a porous megaregolith. Varying depths of this megaregolith between the mare and highlands is a plausible partial explanation for differences in previously reported measured size-frequency distributions. We give a revised analytical relationship between the number of craters and the age of a lunar surface. For the inner planets, expected size-frequency crater distributions are calculated that account for differences in impact conditions, and the age of a few key geologic units is given. We estimate the Orientale and Caloris basins to be 3.73 Ga old, and the surface of Venus to be 240 Ma old. The terrestrial cratering record is consistent with the revised chronology and a constant impact rate over the last 400 Ma. Better knowledge of the orbital dynamics, crater scaling laws and megaregolith properties are needed to confidently assess the net uncertainty of the model ages that result from the combination of numerous steps, from the observation of asteroids to the formation of craters. Our model may be inaccurate for periods prior to 3.5 Ga because of a different impactor population, or for craters smaller than a few kilometers on Mars and Mercury, due to the presence of subsurface ice and to the abundance of large secondaries, respectively. Standard parameter values allow for the first time to naturally reproduce both the size distribution and absolute number of lunar craters up to 3.5 Ga ago, and give self-consistent estimates of the planetary cratering rates relative to the Moon.  相似文献   
333.
The Lunar Crater Observation and Sensing Satellite (LCROSS) mission was an impact exploration searching for a volatile deposit in a permanently shadowed region (PSR) by excavating near-surface material. We conducted infrared spectral and imaging observations of the LCROSS impacts from 15 min before the first collision through 2 min after the second collision using the Subaru Telescope in order to measure ejecta dust and water. Such a ground-based observation is important because the viewing geometry and wavelength coverage are very different from the LCROSS spacecraft. We used the Echelle spectrograph with spectral resolution λλ ∼ 10,000 to observe the non-resonant H2O rotational emission lines near 2.9 μm and the slit viewer with a K′ filter for imaging observation of ejecta plumes. Pre-impact calculations using a homogeneous projectile predicted that 2000 kg of ejecta and 10 kg of H2O were excavated and thrown into the analyzed area immediately above the slit within the field of view (FOV) of the K′ imager and the FOV of spectrometer slit, respectively. However, no unambiguous emission line of H2O or dust was detected. The estimated upper limits of the amount of dust and H2O from the main Centaur impact were 800 kg and 40 kg for the 3σ of noise in the analyzed area within the imager FOV and in the slit FOV, respectively. If we take 1σ as detection limit, the upper limits are 300 kg and 14 kg, respectively. Although the upper limit for water mass is comparable to a prediction by a standard theoretical prediction, that for dust mass is significantly smaller than that predicted by a standard impact theory. This discrepancy in ejecta dust mass between a theoretical prediction and our observation result suggests that the cratering process induced by the LCROSS impacts may have been substantially different from the standard cratering theory, possibly because of its hollow projectile structure.  相似文献   
334.
335.
Dealing with moon theory and tidal dynamics and checking lists of earthquake data one can take the following two observations: 1) The first extreme proxigean spring tide in the new millennium happened on 2005 January 10, in new moon phase, and half a synodic month earlier, when the Moon was full on 2004 December 26, the Christmas Tsunami was triggered in the Indian Ocean. The next extreme tide in new moon phase will occur after one Saros cycle, on 2023 January 21. 2) The second observation is connected with the lunar evection anomaly. The time between the Whitsun Quake in China on 2008 May 12 and the Christmas Tsunami amounts to 1233 days. On the other hand, three lunar evectional cycles take 3 × Ue = 3 × 411.8 = 1235 days. These observations hint at lunisolar structures in the earthquake distribution. In the present treatise we will reveal such structures by composing lunisolar ephemerides and earthquake Tables. In particular, we use Student's t‐test and show that there is a significant relationship between the beat period Ue and the earthquake statistics (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
336.
月球形成和演化的关键科学问题   总被引:4,自引:0,他引:4  
林杨挺 《地球化学》2010,39(1):1-10
我国正开展月球探测和科学研究,其成果将加深认识月球的组成、结构以及形成和演化,同时揭示地球的早期历史。通过对月球研究成果的总结,就月球形成和演化关键科学问题的现状作了较为详细的说明,从而为我国月球探测和科学研究提供有益的启示。主要的关键科学问题包括:地球一月球体系的大撞击成因、月球岩浆洋与月壳形成、39亿年大撞击事件、玄武岩浆喷发与月球内部结构和月球南极艾特肯(Aitken)撞击盆地的形成等。  相似文献   
337.
丁锋  万卫星 《地球化学》2010,39(1):11-14
从20世纪60年代到本世纪初,人类发射了一系列绕月飞船,对月球大气和月球电离层进行研究。科学家发现,月球电离层主要出现在向日面。在表面几百米高度范围内,由太阳辐射导致的光致电离使得月球向日面出现密度不超过10^10/m2的电离层等离子体。进一步研究表明,由于月球没有内禀磁场,月球电离层与太阳风中的行星际电场耦合在一起,时刻处在“飘动”中。电离层密度的变化与月相、当地的月表剩磁、太阳风条件、当地的月壤特性等相联系。  相似文献   
338.
A computer‐readable version of the Moon's charts which refer to the center of its mass and the principal axes of the inertia were constructed on the basis of large‐scale star calibrated lunar photographies. The accuracy of six charts have been examined by reduction of observations of lunar occultations on the basis of the theory LE200.  相似文献   
339.
敦煌月牙泉形成于第四纪全新世,距今约12 ka。因泉湖地处鸣沙山环抱之中,形似月牙并兼具沙水共生的淡水泉湖特征,成为世界瞩目的自然地理环境的重要地质遗迹。对月牙泉湖近百年水位动态变化进行了综合分析,认为月牙泉湖水位动态变化的综合原因可归结为气候和人为因素。1960年开始农业打井灌溉、党河水库和渠系的修建导致地下水补、排失衡,到2001年月牙泉湖水位下降9. 98 m,年均下降0. 24 m,致使区域性地下水位的下降是造成月牙泉湖水位下降的主要原因,气温的升高加大蒸发量是月牙泉湖水位动态变化的次要原因。通过月牙泉人工补水工程,2018~2019年月牙泉湖水位上升1. 58 m,湖水域面积由9472. 59 m2逐渐扩大到13334. 75 m2,昔日古人心中美丽的月牙泉面貌再次展现在我们的眼前。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号