首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1190篇
  免费   25篇
  国内免费   30篇
测绘学   11篇
大气科学   4篇
地球物理   21篇
地质学   102篇
海洋学   18篇
天文学   1074篇
综合类   2篇
自然地理   13篇
  2024年   1篇
  2023年   1篇
  2022年   5篇
  2021年   5篇
  2020年   3篇
  2019年   6篇
  2018年   6篇
  2017年   2篇
  2016年   9篇
  2015年   6篇
  2014年   13篇
  2013年   19篇
  2012年   12篇
  2011年   16篇
  2010年   19篇
  2009年   116篇
  2008年   101篇
  2007年   111篇
  2006年   131篇
  2005年   105篇
  2004年   100篇
  2003年   99篇
  2002年   70篇
  2001年   67篇
  2000年   63篇
  1999年   63篇
  1998年   60篇
  1997年   4篇
  1996年   3篇
  1995年   13篇
  1994年   5篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有1245条查询结果,搜索用时 15 毫秒
41.
42.
43.
44.
Although analytic solutions for the attitude motion of a rigid body are available for several special cases, a comprehensive theory does not exist in the literature for the more complicated problems found in spacecraft dynamics. In the present paper, analytic solutions in complex form are derived for the attitude motion of a near-symmetric rigid body under the influence of constant body-fixed torques. The solution is very compact, which enables efficient and rapid machine computation. Numerical simulations reveal that the solution is very accurate when applied to typical spinning spacecraft problems.  相似文献   
45.
46.
We compute the specific angular momentum distributions for a sample of low-mass disc galaxies observed by Swaters. We compare these distributions to those of dark matter haloes obtained by Bullock et al. from high-resolution N -body simulations of structure formation in a ΛCDM universe. We find that although the disc mass fractions are significantly smaller than the universal baryon fraction, the total specific angular momenta of the discs are in good agreement with those of dark matter haloes. This suggests that discs form out of only a small fraction of the available baryons, but yet manage to draw most of the available angular momentum. In addition we find that the angular momentum distributions of discs are clearly distinct from those of the dark matter; discs lack predominantly both low and high specific angular momenta. Understanding these findings in terms of a coherent picture for disc formation is challenging. Cooling, feedback and stripping, which are the main mechanisms to explain the small disc mass fractions found, seem unable to simultaneously explain the angular momentum distributions of the discs. In fact, it seems that the baryons that make up the discs must have been born out of angular momentum distributions that are clearly distinct from those of ΛCDM haloes. However, the dark and baryonic mass components experience the same tidal forces, and it is therefore expected that they should have similar angular momentum distributions. Therefore, understanding the angular momentum content of disc galaxies remains an important challenge for our picture of galaxy formation.  相似文献   
47.
The stability of the dynamical trajectories of softened spherical gravitational systems is examined, both in the case of the full N -body problem and that of trajectories moving in the gravitational field of non-interacting background particles. In the latter case, for   N 10 000  , some trajectories, even if unstable, had exceedingly long diffusion times, which correlated with the characteristic e-folding time-scale of the instability. For trajectories of   N ≈100 000  systems this time-scale could be arbitrarily large – and thus appear to correspond to regular orbits. For centrally concentrated systems, low angular momentum trajectories were found to be systematically more unstable. This phenomenon is analogous to the well-known case of trajectories in generic centrally concentrated non-spherical smooth systems, where eccentric trajectories are found to be chaotic. The exponentiation times also correlate with the conservation of the angular momenta along the trajectories. For N up to a few hundred, the instability time-scales of N -body systems and their variation with particle number are similar to those of the most chaotic trajectories in inhomogeneous non-interacting systems. For larger N (up to a few thousand) the values of the these time-scales were found to saturate, increasing significantly more slowly with N . We attribute this to collective effects in the fully self-gravitating problem, which are apparent in the time variations of the time-dependent Liapunov exponents. The results presented here go some way towards resolving the long-standing apparent paradoxes concerning the local instability of trajectories. This now appears to be a manifestation of mechanisms driving evolution in gravitational systems and their interactions – and may thus be a useful diagnostic of such processes.  相似文献   
48.
In this series of papers we investigate the orbital structure of three-dimensional (3D) models representing barred galaxies. In the present introductory paper we use a fiducial case to describe all families of periodic orbits that may play a role in the morphology of three-dimensional bars. We show that, in a 3D bar, the backbone of the orbital structure is not just the x1 family, as in two-dimensional (2D) models, but a tree of 2D and 3D families bifurcating from x1. Besides the main tree we have also found another group of families of lesser importance around the radial 3:1 resonance. The families of this group bifurcate from x1 and influence the dynamics of the system only locally. We also find that 3D orbits elongated along the bar minor axis can be formed by bifurcations of the planar x2 family. They can support 3D bar-like structures along the minor axis of the main bar. Banana-like orbits around the stable Lagrangian points build a forest of 2D and 3D families as well. The importance of the 3D x1-tree families at the outer parts of the bar depends critically on whether they are introduced in the system as bifurcations in z or in   z˙   .  相似文献   
49.
50.
A non-topological soliton model with a repulsive scalar self-interaction of the Emden type provides a constant-density core, similarly as the empirical Burkert profile of dark matter (DM) haloes. As a further test, we derive the gravitational lens properties of our model, in particular, the demarcation curves between 'weak' and 'strong' lensing. Accordingly, strong lensing with typically three images is almost three times more probable for our solitonic model than for the Burkert fit. Moreover, some prospective consequences of a possible flattening of DM haloes are indicated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号