首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   486篇
  免费   142篇
  国内免费   99篇
测绘学   3篇
大气科学   617篇
地球物理   9篇
地质学   44篇
海洋学   2篇
天文学   1篇
综合类   19篇
自然地理   32篇
  2024年   1篇
  2023年   6篇
  2022年   11篇
  2021年   26篇
  2020年   18篇
  2019年   31篇
  2018年   26篇
  2017年   24篇
  2016年   31篇
  2015年   38篇
  2014年   45篇
  2013年   37篇
  2012年   42篇
  2011年   51篇
  2010年   59篇
  2009年   62篇
  2008年   62篇
  2007年   36篇
  2006年   29篇
  2005年   12篇
  2004年   34篇
  2003年   42篇
  2002年   4篇
排序方式: 共有727条查询结果,搜索用时 93 毫秒
41.
青海湖布哈河流域树轮宽度指数与NDVI植被指数的关系   总被引:4,自引:2,他引:2  
利用来自青海湖流域乌兰和天峻的树轮指数和1982-2003年逐月标准化植被指数(NDVI)数据及气候数据, 在分析树轮指数及草地NDVI与气候因子关系的基础上, 探讨了树轮宽度指数序列与青海湖布哈河流域草地NDVI之间的关系.结果表明: 树轮宽度指数及草地NDVI主要受6-8月份的水热条件的影响, 温度与同期树轮宽度指数及草地NDVI具有较高的正相关, 而降水的影响存在滞后性.树木年轮指数序列与6-8月草地NDVI有显著的相关关系, 与8月份的NDVI相关性最强.树轮指数与草地NDVI间的显著相关性为研究该地区草地过去的动态变化提供了基础, 利用乌兰和天峻的两条树轮指数重建了8月份NDVI的千年变化.  相似文献   
42.
本文仅改变模式下垫面的地形资料,对西南地区降水过程进行模拟试验,通过模拟结果的分析对比,我们认为1)不同地形资料(或是对地形资料进行平滑处理),在地形突变处的差异最为显著。2)地形细微的变化最直接影响的是降水位置,其次是降水强度。3)地形变化之后,短波辐射受到的影响最为直接,感热通量和潜热通量是此消彼长。4)盆地有降水过程时,低层一般盛行东南风,且会在盆地内部产生气旋性弯曲,气流在迎风坡存在明显的辐合,而背风坡则存在明显的辐散。5)地形梯度同样影响对流的发生发展,在地形陡峭处更容易产生强烈的上升运动,地形梯度越缓,气流的爬升能力也越强。总之,地形的微小变化已经可以对降水的落区和强度产生显著的影响。   相似文献   
43.
利用1961-2008年青海南部牧区地面气象观测资料、74个环流特征量和北半球500 hPa高度场网格点资料,整理了地表积雪序列和雪灾年表,并对积雪的变化趋势和雪灾发生的机理进行了研究。结果表明,1961-2008年青南牧区共有16 a发生积雪灾害,占总年数的33.33%。在4 450 m以下,累计积雪量随海拔高度的升高而增加,在4 451 m以上,累计积雪量随海拔高度的升高而减小。典型多积雪年新地岛地区的冷空气偏强、高原低值系统活动偏多,新地岛的冷空气容易沿偏西北路径侵入青南高原与高空槽前的暖湿空气汇合,形成云雨的物理条件充分,降雪多、积雪厚。典型少积雪年环流形势与上述基本相反。10-12月北美区极涡面积偏大和欧亚经向环流偏强、10月欧亚经向环流偏强、11月大西洋欧洲环流型E型日数偏多、12月大西洋副高北界位置偏北均有利于前冬青藏高原高度场的偏低和青南牧区累计积雪量的偏多。这些环流因子在相反的配置下,容易导致青南牧区累计积雪量的偏少。前冬模拟预报方程对典型多积雪年和1993年以来的积雪变化趋势全部预测成功。  相似文献   
44.
2009年7月在青藏高原主体利用英国DELTA-T公司生产的W.E.T土壤三参数仪对不同下垫面进行土壤三参数监测,共得到19组200次测量数据,对这些数据进行初步分析,结果表明:不同下垫面土壤三参数随海拔高度变化规律不同;土壤三参数之间的关系可能受到下垫面类型的影响,灌丛地土壤温度与土壤电导率的变化较一致,而含水量的变化与温度及电导率的变化没有相关趋势,草地土壤电导率与含水量有相反的变化趋势,而温度变化则与含水量及电导率变化无相关趋势。   相似文献   
45.
2010年夏季西南涡加密观测科学试验   总被引:9,自引:1,他引:8  
本文总结了四川省2010年西南涡加密观测科学试验的总体情况,包括科学试验的重大意义、总体目标、具体方案,预期成果和组织领导等,并且,重点阐述了这次西南涡加密观测科学试验取得的基本成果及其在业务中的实时应用,以及对于今后西南涡观测试验、科学研究和业务应用的重要价值。   相似文献   
46.
金沙江流域气温降水变化特性分析   总被引:1,自引:0,他引:1  
根据金沙江流域气温和降水资料,采用M ann-Kendall趋势分析、有序聚类、小波分析方法分析流域气温和降水的年际变化特征、趋势性、突变性和周期性。研究表明:(1)金沙江流域上游多年平均气温在0℃以下,年际变化稍大,下游多年平均气温在12℃左右,中游处于二者之间,且年际变化较小;流域大部分地区年均气温呈显著性升高趋势,气温升高主要发生在1980年以后,且普遍存在7~9年、14~15年和23~25年的近似周期,在1997、1992年和1986年发生突变;(2)金沙江流域降水丰富,干流年降水量自上游至下游逐渐增大,支流相对较均匀,且年降水年际变化较小;流域大部分地区年降水呈不显著的增加趋势,局部出现降水减少现象;普遍存在2~3年、7~8年和15年的近似周期;在1997、1993、1986年左右存在突变性。   相似文献   
47.
基于Barnes滤波原理的降水场客观分析及尺度分离   总被引:4,自引:0,他引:4  
基于Barnes滤波原理(又称高斯加权客观分析),在进行网格点插值的同时,通过选择适当的滤波参数C、G滤去原始场中的短波噪音,使分析结果平稳光滑;另外可通过它构成一带通滤波器,根据实际需要分离出影响天气过程的各种次天气尺度,达到尺度分离的目的。以全国160个国家基准代表站1954—2006年共53a的年平均降水场为例作实例分析,并同用Grads内插函数(Oacres函数)、九点平滑函数(Smth9函数)的绘图结果进行对比分析,结果表明客观分析结果同Grads内插平滑分析结果基本相似,都能反映出我国53a年平均降水场从东南向西北逐渐递减的趋势且与实际情况相符,降水场高值中心位于长江流域及以南的华南等地区,低值中心位于黄河流域以北的广大西部地区。取不同的参数C和G得到的尺度分离后的带通滤波值,既抑止了长波,又抑制了短波,达到较好的尺度分离效果。  相似文献   
48.
本文将高原东坡及其下游盆地区域加密探空观测的低层大气物理要素场与WRF模式结果进行对比分析,得到如下结论:1)川西高海拔地区,模式格点与站点海拔差异非常大,模式地形普遍偏高,最大差值超过上千米。低海拔地区,模式格点与站点海拔比较接近。2)在高海拔地区,差异主要体现在近地层大气中;00时的比湿差异最小;06时的比湿差异最为显著,模拟的低层大气的比湿比探空观测值大。06时模拟的温度高于探空观测,其它12、18、00时3个时次则略低于探空观测。除了初始场,模拟的低层大气的水平风速普遍比探空观测的值大。3)在低海拔地区,模式初始场给出的低层大气比湿、温度与探空观测差异较小;06、12、18时,模拟的大气比湿通常比探空观测偏湿,温度也显著偏高,4个时次中,正午时分低层大气的温湿偏差最显著。同一时次,积分时长越短模拟的风速越小,低层大气中常常存在一个风速的大值区。4)模式比较稳定,没有随着模拟时长的增加,误差明显增长。模拟的低层大气比湿、温度、水平风速逐日波动形态与观测基本一致。  相似文献   
49.
南方两次降雪过程的降水相态模拟研究   总被引:1,自引:0,他引:1  
利用常规地面观测资料、NCEP GFS分析资料、卫星及多普勒雷达资料和中尺度数值模式WRF,通过对比分析寒潮型暴雪和冷暖空气对峙型(下称对峙型)雨雪两类天气过程的大气环流形势、温湿廓线和对流层中低层风场特征,发现温度平流的强度和高度层次是两类雨雪天气过程的最大差异.东部沿海地区的低层风向可以用来判定冷空气的强度和爆发时间.从热量的收支来看,温度垂直廓线的主要影响因子是温度的水平平流和非绝热过程.逆温层的出现主要是温度水平平流项的贡献;强降水期间,非绝热加热与温度水平平流的增温效果相当.对峙型降雪的平流降温明显小于寒潮型降雪,对峙型降雪的中低层更多的是暖平流.950 hPa混合降水凝结比可作为降水相态的预报因子,混合降水凝结比接近100%,雪混合比>0.2 g·kg-1,地面降雪;凝结比在95%~100%之间为降水类型过渡区,结合非绝热降温幅度和地面温度,可以用来判定过渡区的降水类型;凝结比<90%,地面温度在0℃以上,类型为降雨.  相似文献   
50.
近30年西藏地区大气可降水量的时空变化特征   总被引:2,自引:0,他引:2  
利用1980-2009年NCEP/NCAR再分析资料以及同期西藏地区34个气象站的月降水量资料,分析了该地区大气可降水量和降水转化率的时空变化特征.结果表明:(1)该地区大气可降水量具有从东南向西北逐渐递减的空间分布特征;近30年大气可降水量呈逐渐减少趋势且年际变率相对较小,还表现出显著的季节差异,即夏季大气可降水量最大、冬季最小;多、少雨年大气可降水量的空间差异不显著,说明西藏地区的空中水汽含量相对稳定,有利于空中水资源的合理开发和利用.(2)降水转化率在那曲中东部和西藏东南部最高、西藏西北部最低;近30年西藏地区降水转化率呈逐渐增加趋势且年际变率较大,其季节变化与大气可降水量的变化规律一致;降水转化率的高低在一定程度上决定了某年为多(少)雨年.(3)西藏地区大气可降水量和实际降水量的空间分布规律接近,但其时间变化趋势与同期降水量增加的趋势正好相反;大气可降水量转化率与实际降水量的变化趋势基本一致,降水转化率的升高(降低)对应着降水量的增多(减少).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号