首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   15篇
  国内免费   57篇
测绘学   2篇
大气科学   78篇
地球物理   3篇
地质学   5篇
海洋学   2篇
综合类   1篇
  2023年   3篇
  2022年   5篇
  2021年   1篇
  2020年   5篇
  2019年   3篇
  2017年   3篇
  2016年   4篇
  2015年   8篇
  2014年   5篇
  2013年   11篇
  2012年   6篇
  2011年   8篇
  2010年   1篇
  2009年   7篇
  2008年   3篇
  2007年   5篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  1996年   4篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有91条查询结果,搜索用时 31 毫秒
41.
冬季高海拔复杂地形下GRAPES Meso要素预报的检验评估   总被引:4,自引:0,他引:4  
利用GRAPES(Globe/Regional Assimilation and Prediction System)对2010年温哥华奥运会6个场馆气温、相对湿度、风及降水量的预报结果,采用预报准确率、平均误差、平均绝对误差、Alpha Index、TS和ETS评分等统计量对其进行了较详细的评估。结果表明:GRAPESMeso预报相对湿度的准确率最高,且随预报时效的增加,其变化趋于稳定。起初模式对相对湿度的预报偏干,之后逐渐变为预报偏湿;气温预报偏低;风速预报偏大。逐日各要素预报检验结果表明,气温的变化幅度最小;各级降水检验发现,晴雨预报的TS评分最高,且随降水增大,ETS评分逐渐接近TS。与其他模式预报结果对比发现,GRAPES-Meso对复杂地形下要素预报还存在一定的不足。本研究还发现,模式存在一定的系统误差,若能有效订正其误差,将有助于改进模式预报。  相似文献   
42.
2020年5月22日凌晨粤港澳大湾区发生了一次极端强降水过程,最大小时雨量和3小时雨量打破广东省内“龙舟水”期间的历史最高纪录。利用多源观测数据以及ERA5再分析资料对引发局地极端降水的中尺度对流系统(MCS)的演变过程与中尺度特征开展研究。(1)此次强降水过程主要集中在凌晨时段,具有持续时间短、局地雨强极端、累积雨量大等特点,在3小时的降水过程中出现了两个降水峰值。(2)这次过程为一次暖区暴雨过程,低层西南季风提供了充足的暖湿水汽,低涡切变线提供了良好的抬升条件。中α尺度季风云团呈准静止状态并升尺度增长为MCC(中尺度对流复合体)的过程引发了大湾区夜间局地的极端降水。(3)过程中两个阶段的峰值降水与中γ尺度对流单体生消发展期间的传播与移动矢量发生的改变有密切联系。数个中γ尺度对流单体构成多单体风暴形态,呈西北-东南侧向排列,这些单体先后触发发展并有着各自的地面辐合线。对流单体在环境风引导下向偏东南方向移动引发第一阶段峰值降水。随后不同单体的辐合线连接,对流向西南方向传播显著加快,使对流系统移动矢量发生改变,因而造成第二阶段峰值降水。(4)造成两段峰值降水的中γ尺度对流单体结构存在明显...  相似文献   
43.
本文利用约束变分客观分析法构建的物理协调大气变分客观分析模型,通过融合地面、探空、卫星等多源观测资料和ERA-Interim再分析资料,建立了青藏高原那曲试验区5年(2013~2017年)长时间序列的热力、动力相协调的大气分析数据集,并以此分析那曲试验区大气的基本环境特征与云—降水演变和大气动力、热力的垂直结构。分析表明:(1)试验区350 hPa以上风速的季节变化非常明显,风速在冬季11月至次年2月达到最大(>50 m s?1),盛夏7~8月风速的垂直变化最弱,温度的垂直变化最强,大气高湿区在夏秋雨季位于350~550 hPa,在冬春干季升至300~400 hPa。(2)试验区6~7月上旬降水最多;春、秋、冬三季,300~400 hPa高度层作为大气上升运动和下沉运动的交界处,是云量的集中区;夏季,增多的水汽和增强的大气上升运动导致高云和总云量明显增多,中、低云减少。(3)夏季的地表潜热通量与大气总的潜热释放最强,大气净辐射冷却最弱,高原地区较强的地面感热导致试验区500 hPa以下的近地面全年存在暖平流,500 hPa以上则由于强烈的西风和辐射冷却存在冷平流。此外,试验区整层大气全年以干平流为主,但在夏季出现了较弱的湿平流。(4)视热源Q1具有明显的垂直分层特征:全年500 hPa以下大气表现为冷源,300~500 hPa和100~150 hPa表现为热源,150~300 hPa则在冬春干季表现为冷源,在夏秋雨季表现为热源,不同高度层的冷、热源的形成原因不同,其中夏季由于增强的上升运动、感热垂直输送和水汽凝结潜热以及高云的形成,因此几乎整层大气表现为热源。  相似文献   
44.
云微物理参数化方案在数值模式中起着重要的作用,是影响数值天气预报和气候预测准确性的最大因素。系统回顾了中尺度数值模式中云微物理参数化方案的研究进展,并统计分析了最近十余年云微物理参数化方案在中国范围内的敏感性试验研究成果。Lin方案和Rutledge-Hobbs方案奠定了中尺度模式中云微物理参数化方案的基础,其他方案都是直接或间接在这2个方案的基础上从多方面改进而形成的。这些改进主要体现在:①水凝物粒子分类数目;②冰核活化;③粒子谱分布描述函数;④粒子谱截距的取值;⑤粒子间相互转换阈值大小的设定。中国范围内云微物理参数化方案敏感性试验研究成果统计表明,使用WRF模式中Lin方案的模拟效果较好,MM5模式采用Goddard和Reisner方案效果较好。  相似文献   
45.
利用自动站资料、卫星云图、新一代天气雷达资料与NCEP再分析资料,分析了2010年7月17—19日黄淮地区低涡暴雨过程中两次强降水过程(分别简称“7.17”过程和“7.18”过程)的环境条件及其中尺度系统发生、发展演变过程。结果表明:(1)两次强降水均发生在充足的水汽输送、大的不稳定能量和较强的辐合上升运动等有利环境条件下,“7.17”过程热力条件更好,降水强度大,但降水范同小;“7.18”过程动力条件更好、强降水落区范围大,但雨强比“7.17”过程小。(2)“7.17”过程累积暴雨带落区位于气旋中心移动路径两侧约30—80km范围内,“7.18”过程累积暴雨、大暴雨带落区位于气旋中心移动路径两侧约70~100km范同内。(3)中尺度雨团(带)和短时强降水主要出现在地面中尺度气旋周围附近,地面中尺度气旋活动的不同阶段强降水落区不同。(4)卫星云图上,两次过程强降水均由发展旺盛的对流云团自西南向东北移动而产生,对流云顶亮温低至210~220K。(5)雷达回波图上,“7.17”过程涡旋特征更明显,“7.18”过程冷暖切变回波带特征更明显。两次过程中尺度雨带与大于等于43dBz的螺旋回波带对应关系较好,短时强降水和螺旋雨带上大于等于48dBz的强回波有较好的对应关系。  相似文献   
46.
长江下游地区不同边界层参数化方案的试验研究   总被引:13,自引:5,他引:8  
利用中尺度数值模式WRFV3.1.1中的MYJ、QNSE、YSU、ACM2、MYNN2.5、MYNN3、Boulac七种不同边界层参数化方案,进行了发生在长江下游地区的3例暴雨的模拟试验.重点分析比较了七个不同边界层参数化方案对降水总量分布、次降水区的边界层结构、关键基本气象要素场的模拟能力,并将降水总量和关键基本气象要素场的模拟结果与实测结果进行了统计检验.通过对比,发现QNSE方案的模拟能力相对优于其他边界层参数化方案.  相似文献   
47.
梁钊明  高守亭  王东海  王彦 《大气科学》2013,37(5):1013-1024
海风锋与沿海强对流天气密切相关,而城市化发展对沿海地区下垫面的改变会对海风锋特征产生影响。鉴于此,本文利用耦合了新一代城市物理方案UCP-BEM(Urban Canopy Parameterization-Building Energy Model)的WRF(Weather Research and Forecasting)模式开展数值试验分析了城市下垫面对渤海湾海风锋特征的影响。结果显示:城市下垫面高粗糙度对低层海风风速的明显削弱造成海风锋往内陆推进距离稍减,低层辐合和上升运动减弱;城市下垫面较大的向上感热通量和较小的向上水汽通量以及高粗糙度对海风的削弱的共同作用造成冷湿海风对低层大气的降温和增湿幅度减弱;高粗糙度的城市下垫面对海风环流的摩擦力效应使得海风得到抬升,这导致了冷湿海风对低层大气的降温和增湿的垂直范围得到提升;受这些结果影响,海风锋背后低层有效位能减小,但垂直分布范围扩大,从而造成对流抑制高值区抬升,同时海风锋背后的静力不稳定区变厚,其上面的动力不稳定区则变薄,但不稳定区总厚度基本不变。  相似文献   
48.
The Advanced Research Weather Forecasting (ARW) model was used to simulate the sudden heavy rainstorm associated with the remnants of Typhoon Meranti in September 2010. The results showed that the heavy rainfall was produced when the remnant clouds redeveloped suddenly, and the redevelopment was caused by rapid growth of micro/mesoscale convective systems (MCSs). As cold air intruded into the warm remnant clouds, the atmosphere became convectively unstable and frontogenesis happened due to strong wind shear between weak northerly flow and strong southwesterly flow in the lower levels. Under frontogenesis-forcing and warm-air advection stimulation in updrafts, vertical convection developed intensely inside the remnant clouds, with MCSs forming and maturing along the front. The genesis and development of MCSs was due to the great progress vertical vorticity made. The moist isentropic surface became slantwise as atmospheric baroclinity intensified when cold air intruded, which reduced the convective instability of the air.Meanwhile, vertical wind shear increased because the north cold air caused the wind direction to turn from south to north with height. In accordance with slantwise vorticity development (SVD), vertical vorticity would develop vigorously and contribute greatly to MCSs. Buoyancy, the pressure gradient, and the lifting of cold air were collectively the source of kinetic energy for rainfall. The low-level southwesterly jet from the western margin of the Western Pacific Subtropical High transported water and heat to remnant clouds. Energy bursts and continuous water vapor transportation played a major role in producing intense rainfall in a very short period of time.  相似文献   
49.
2008年华南前汛期致洪暴雨特征及其对比分析   总被引:10,自引:5,他引:5  
王东海  夏茹娣  刘英 《气象学报》2011,69(1):137-148
着重对2008年华南前汛期持续性致洪暴雨的降水特征及成因进行了天气尺度的研究,并且对比分析了其与20世纪90年代以来华南前汛期洪灾较为严重的几年(1994、1998和2005年)的降水和环流场特征异同,主要得到以下结果:(1)根据影响系统和雨区分布的不同,将2008年华南前汛期降水过程分为4个阶段.第1阶段(5月26-...  相似文献   
50.
运用BGM扰动方案,基于ARPS和WRF模式并采用不同的物理过程参数化方案建立了一个多模式、多初值、多物理过程的中尺度超级集合预报系统,并针对2010年6月19—20日的一次华南强降水过程进行分析。结果表明:该超级集合预报系统能很好模拟这次对初值及物理过程都非常敏感的强降水过程。相对于单一确定性预报而言,该超级集合预报能显著提高预报时效,能比控制预报提前24~36小时捕捉到强降水信息。并且该集合预报优于单一模式或者单一物理过程参数化的集合预报。对本次过程而言,集合平均对物理过程参数化方面带来的不确定性的改进比对模式不确定性方面的改进大得多。对于暴雨预报而言,低层的形势场对初值及物理过程的扰动比高层要敏感得多,这也是造成这次过程各个成员预报好坏的重要原因之一。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号