首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   251512篇
  免费   5255篇
  国内免费   3228篇
测绘学   6822篇
大气科学   19002篇
地球物理   52296篇
地质学   87136篇
海洋学   21384篇
天文学   54425篇
综合类   1008篇
自然地理   17922篇
  2021年   2152篇
  2020年   2572篇
  2019年   2814篇
  2018年   3452篇
  2017年   3213篇
  2016年   5651篇
  2015年   4178篇
  2014年   6870篇
  2013年   14160篇
  2012年   6426篇
  2011年   7755篇
  2010年   6872篇
  2009年   9446篇
  2008年   8286篇
  2007年   7790篇
  2006年   9619篇
  2005年   7669篇
  2004年   7568篇
  2003年   6949篇
  2002年   6535篇
  2001年   5848篇
  2000年   5555篇
  1999年   4795篇
  1998年   4832篇
  1997年   4622篇
  1996年   4187篇
  1995年   4297篇
  1994年   3984篇
  1993年   3724篇
  1992年   3479篇
  1991年   3513篇
  1990年   3610篇
  1989年   3312篇
  1988年   3158篇
  1987年   3704篇
  1986年   3245篇
  1985年   4107篇
  1984年   4615篇
  1983年   4291篇
  1982年   4210篇
  1981年   3830篇
  1980年   3585篇
  1979年   3431篇
  1978年   3425篇
  1977年   3215篇
  1976年   2958篇
  1975年   2901篇
  1974年   2863篇
  1973年   3057篇
  1972年   1990篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.

The LP/OMPS limb sensor of the Suomi satellite detected the atmospheric trace of the Chelyabinsk superbolide with an energy of over 400 kt TNT in 2013. The study of LP/OMPS data shows that it detects several bolides with much less energy each year. The paper considers the cases of observation of three bolides in 2016–2017: on February 6, 2016 (13 kt), March 3, 2016 (0.19 kt), and March 9, 2017 (1 kt). The possibility of improving the detection of bolides using a limb sensor in the form of a microsatellite with an increased number of observation regions along the horizon is discussed. Several such microsatellites will be able to track most of the bodies larger than a meter that burn up in the atmosphere of the Earth or Mars.

  相似文献   
52.
The distribution of the short‐lived radionuclide 26Al in the early solar system remains a major topic of investigation in planetary science. Thousands of analyses are now available but grossite‐bearing Ca‐, Al‐rich inclusions (CAIs) are underrepresented in the database. Recently found grossite‐bearing inclusions in CO3 chondrites provide an opportunity to address this matter. We determined the oxygen and magnesium isotopic compositions of individual phases of 10 grossite‐bearing CAIs in the Dominion Range (DOM) 08006 (CO3.0) and DOM 08004 (CO3.1) chondrites. All minerals in DOM 08006 CAIs as well as hibonite, spinel, and pyroxene in DOM 08004 are uniformly 16O‐rich (Δ17O = ?25 to ?20‰) but grossite and melilite in DOM 08004 CAIs are not; Δ17O of grossite and melilite range from ~ ?11 to ~0‰ and from ~ ?23 up to ~0‰, respectively. Even within this small suite, in the two chondrites a bimodal distribution of the inferred initial 26Al/27Al ratios (26Al/27Al)0 is seen, with four having (26Al/27Al)0 ≤1.1 × 10?5 and six having (26Al/27Al)0 ≥3.7 × 10?5. Five of the 26Al‐rich CAIs have (26Al/27Al)0 within error of 4.5 × 10?5; these values can probably be considered indistinguishable from the “canonical” value of 5.2 × 10?5 given the uncertainty in the relative sensitivity factor for grossite measured by secondary ion mass spectrometry. We infer that the 26Al‐poor CAIs probably formed before the radionuclide was fully mixed into the solar nebula. All minerals in the DOM 08006 CAIs, as well as spinel, hibonite, and Al‐diopside in the DOM 08004 CAIs retained their initial oxygen isotopic compositions, indicating homogeneity of oxygen isotopic compositions in the nebular region where the CO grossite‐bearing CAIs originated. Oxygen isotopic heterogeneity in CAIs from DOM 08004 resulted from exchange between the initially 16O‐rich (Δ17O ~?24‰) melilite and grossite and 16O‐poor (Δ17O ~0‰) fluid during hydrothermal alteration on the CO chondrite parent body; hibonite, spinel, and Al‐diopside avoided oxygen isotopic exchange during the alteration. Grossite and melilite that underwent oxygen isotopic exchange avoided redistribution of radiogenic 26Mg and preserved undisturbed internal Al‐Mg isochrons. The Δ17O of the fluid can be inferred from O‐isotopic compositions of aqueously formed fayalite and magnetite that precipitated from the fluid on the CO parent asteroid. This and previous studies suggest that O‐isotope exchange during fluid–rock interaction affected most CAIs in CO ≥3.1 chondrites.  相似文献   
53.
We measured the He, Ne, and Ar isotopic concentrations and the 10Be, 26Al, 36Cl, and 41Ca concentrations in 56 iron meteorites of groups IIIAB, IIAB, IVA, IC, IIA, IIB, and one ungrouped. From 41Ca and 36Cl data, we calculated terrestrial ages indistinguishable from zero for six samples, indicating recent falls, up to 562 ± 86 ka. Three of the studied meteorites are falls. The data for the other 47 irons confirm that terrestrial ages for iron meteorites can be as long as a few hundred thousand years even in relatively humid conditions. The 36Cl‐36Ar cosmic ray exposure (CRE) ages range from 4.3 ± 0.4 Ma to 652 ± 99 Ma. By including literature data, we established a consistent and reliable CRE age database for 67 iron meteorites. The high quality of the CRE ages enables us to study structures in the CRE age histogram more reliably. At first sight, the CRE age histogram shows peaks at about 400 and 630 Ma. After correction for pairing, the updated CRE age histogram comprises 41 individual samples and shows no indications of temporal periodicity, especially not if one considers each iron meteorite group separately. Our study contradicts the hypothesis of periodic GCR intensity variations (Shaviv 2002, 2003), confirming other studies indicating that there are no periodic structures in the CRE age histogram (e.g., Rahmstorf et al. 2004; Jahnke 2005). The data contradict the hypothesis that periodic GCR intensity variations might have triggered periodic Earth climate changes. The 36Cl‐36Ar CRE ages are on average 40% lower than the 41K‐K CRE ages (e.g., Voshage 1967). This offset can either be due to an offset in the 41K‐K dating system or due to a significantly lower GCR intensity in the time interval 195–656 Ma compared to the recent past. A 40% lower GCR intensity, however, would have increased the Earth temperature by up to 2 °C, which seems unrealistic and leaves an ill‐defined 41K‐K CRE age system the most likely explanation. Finally, we present new 26Al/21Ne and 10Be/21Ne production rate ratios of 0.32 ± 0.01 and 0.44 ± 0.03, respectively.  相似文献   
54.
Izvestiya, Atmospheric and Oceanic Physics - In this paper we study the evolution of the matter distribution pattern of ink droplets falling freely into calm water and forming a cumulative back jet...  相似文献   
55.
56.
Although Late Cambrian microbial build-ups were recognized in the Point Peak Member of the Wilberns Formation in Central Texas (USA) nearly 70 years ago, only a few studies focused specifically on the build-ups themselves. This study focuses on the interpretation of the regional (15 measured sections described in literature representing an area of 8000 km2) and local (field and drone photogrammetry studies in a 25 km2 area from within south Mason County) microbial build-up occurrence, describes their growth phases and details their interactions with the surrounding inter-build-up sediments. The study establishes the occurrence of microbial build-ups in the lower and upper Point Peak members (the Point Peak Member is informally broken up into the lower Point Peak and the upper Point Peak members separated by Plectotrophia zone). The lower Point Peak Member consists of three <1 m thick microbial bioherms and biostrome units, in addition to heterolithic and skeletal/ooid grainstone and packstone beds. One, up to 14 m thick, microbial unit associated with inter-build-up skeletal and ooid grainstone and packstone beds, intercalated with mixed siliciclastic–carbonate silt beds, characterizes the upper Point Peak member. The microbial unit in the upper Point Peak member displays a three-phase growth evolution, from an initial colonization phase on flat based, rip-up clast lenses, to a second aggradation and lateral expansion phase, into a third well-defined capping phase. The ultimate demise of the microbial build-ups is interpreted to have been triggered by an increase of water turbidity caused by a sudden influx of fine siliciclastics. The lower Point Peak member represents inner ramp shallow subtidal and intertidal facies and the upper Point Peak member corresponds to mid-outer ramp subtidal facies. Understanding the morphological architecture and depositional context of these features is of importance for identifying signatures of early life on Earth.  相似文献   
57.
Volcanic ash preserved in marine sediment sequences is key for independent synchronization of palaeoclimate records within and across different climate archives. Here we present a continuous tephrostratigraphic record from the Labrador Sea, spanning the last 65–5 ka, an area and time period that has not been investigated in detail within the established North Atlantic tephra framework. We investigated marine sediment core GS16-204-22CC for increased tephra occurrences and geochemically analysed the major element composition of tephra shards to identify their source volcano(es). In total we observed eight tephra zones, of which five concentration peaks show isochronous features that can be used as independent tie-points in future studies. The main transport mechanism of tephra shards to the site was near-instantaneous deposition by drifting of sea ice along the East Greenland Current. Our results show that the Icelandic Veidivötn volcanic system was the dominant source of tephra material, especially between late Marine Isotope Stage (MIS) 4 and early MIS 3. The Veidivötn system generated volcanic eruptions in cycles of ca. 3–5 ka. We speculate that the quantity of tephra delivered to the Labrador Sea was a result of variable Icelandic ice volume and/or changes in the transportation pathway towards the Labrador Sea.  相似文献   
58.
Izvestiya, Physics of the Solid Earth - The problem of calculating the reflection and transmission coefficients of elastic P-wave incident from a porous half-space onto a fluid-filled crack is...  相似文献   
59.
Texturally complex monazite grains contained in two granulite-facies pelitic migmatites from southern Baffin Island, Arctic Canada, were mapped by laser ablation-inductively coupled plasma-mass spectrometry (using spot sizes ≤5 µm) to quantitatively determine the spatial variation in trace element chemistry (with up to 1,883 analyses per grain). The maps highlight the chemical complexity of monazite grains that have experienced multiple episodes of growth, resorption and chemical modification by dissolution–precipitation during high-grade metamorphism. Following detailed chemical characterization of monazite compositional zones, a related U–Pb data set is re-interpreted, allowing petrologically significant ages to be extracted from a continuum of concordant data. Synthesis of these data with pseudosection modelling of prograde and peak conditions allows for the temporal evolution of monazite trace element chemistry to be placed in the context of the evolving PT conditions and major phase assemblage. This approach enables a critical evaluation of three commonly used petrochronological indicators: linking Y to garnet abundance, the Eu anomaly to feldspar content and Th/U to anatectic processes. Europium anomalies and Th/U behave in a relatively systematic fashion, suggesting that they are reliable petrochronological witnesses. However, Y systematics are variable, both within domains interpreted to have grown in a single event, between grains interpreted to be part of the same age population, and between samples that experienced similar metamorphic conditions and mineral assemblages. These observations caution against generalized petrological interpretations on the basis of Y content, as it suggests Y concentrations in monazite are controlled by domainal equilibria. The results reveal a c. 45 Myr interval between prograde metamorphism and retrograde melt crystallization in the study area, emphasizing the long-lived nature of heat flow in high-grade metamorphic terranes. Such long timescales of metamorphism would be assisted by the growth, retention and dominance of high-Th suprasolidus monazite, as observed in this study, contributing to the radiogenic heating budget of mid- to lower-crustal environments. Careful characterization of monazite grains suggests that continuum-style U–Pb data sets can be decoded to provide insights into the duration of metamorphic processes.  相似文献   
60.
Stochastic Environmental Research and Risk Assessment - Occupational safety issues encountered in the worksite environment are the issues that companies should consider in improving their...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号