首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   23篇
  国内免费   35篇
测绘学   6篇
大气科学   16篇
地球物理   4篇
地质学   64篇
综合类   5篇
自然地理   2篇
  2024年   1篇
  2023年   4篇
  2022年   9篇
  2021年   6篇
  2020年   5篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   4篇
  2013年   3篇
  2012年   6篇
  2011年   9篇
  2010年   6篇
  2009年   4篇
  2008年   3篇
  2007年   5篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
排序方式: 共有97条查询结果,搜索用时 546 毫秒
51.
青藏高原地-气过程动力、热力结构综合物理图象   总被引:40,自引:2,他引:40  
根据第二次青藏高原大气科学试验(TIPEX)3个边界层观测基地(改则、当雄。昌都)及相关的卫星、探空、地面等加密观测(IOP)资料,综合分析了青藏高原地-气物理过程及其动力学模型,揭示了高原边界层动力学特征和高原湍流运动规律;发现高原边界层低层风向、风速具有多层次变化特征,高原边界层对流混合层较为深厚,高原边界层大气密度远小于平原特征相联系的高原湍流运动“强浮力”效应。高原深厚边界层Ekman螺线及高原边界层动力“抽吸泵”效应。研究了高原近地层局地水汽静态分布状况和水汽的侧边界平流输送特征。分析了高原近地层与边界层异常热力结构,其中包括高原强辐射现象、高原中部地面强热源特征等。综合上述青藏高原近地层与行星边界层动力、热力结构特征,提出了描述高原边界层湍流与对流混合机制的综合物理图象。揭示了显著影响中国长江流域洪涝的青藏高原对流云团的生成、发展和移动的特征,给出与高原“爆米花”云系频发相关的湍流运动和对流泡动力、热力结构概念模型。  相似文献   
52.
西藏羊八井热田地热流体成因及演化的惰性气体制约栽   总被引:1,自引:2,他引:1  
地热流体中惰性气体的相对丰度和同位素组成,不仅可以揭露热田的热源性质,而且还能够揭示深、浅层地热流体的内在联系和演化过程等.在西藏羊八井热田的地热气体中,已检测出大量的4He组分,3He/4He值是大气的0.087~0.259倍,表明深部地壳物质的局部熔融为热田提供能量.浅层地热流体的3He/4He值自西北向东南呈降低趋势,与热储温度的变化相一致,反映出侧向运移时补充了更多的壳源氦.热田北区深层地热流体具有稍高的3He/4He值,是浅层地热流体的母源.气体中氪和氙的相对丰度具有大气降水成因的特征.结合现有的实际资料,建立了热田地热流体的概念模型.  相似文献   
53.
本文采用2012—2018年西藏74个气象站的降水资料,以及墨脱站小时、日、月、季、年的降水资料,对西藏的降水日数、累计降水量、强降水的空间分布进行了分析,结果表明:(1)墨脱是西藏降水日数最多、累计降水量最大的中心,也是出现极端强降水概率最高的区域。(2)墨脱的降水主要集中在3—10月,降水呈现双峰型,峰值分别出现在6月和9月,其中9月的降水量跟年降水量有很好的相关性。(3)墨脱出现暴雨次数最多的是5、8、9月,其中5月的暴雨日数突增,与8、9月的暴雨日数相当。(4)墨脱干湿季分明,多夜雨,凌晨03:00—07:00出现降雨的概率达到50%以上。墨脱位于西藏的最南端,海拔从最低的115m上升到1200m,印度洋的湿润气流沿着雅鲁藏布河谷长驱直入,在地形抬升作用下,使得墨脱的降水量堪比同纬度的内地沿海城市,因此墨脱为西藏的"雨窝"。  相似文献   
54.
西藏马攸木金矿床金矿化晚阶段含金硫锑铅矿脉石英样品40Ar/39Ar快中子活化法坪年龄为22.46±1.20Ma,坪年龄代表石英的结晶年龄.测试结果表明,马攸木金矿床金的成矿作用可能延续到喜马拉雅中晚期.  相似文献   
55.
对雅鲁藏布江成矿带西段松托嘎花岗斑岩中黑云母样品进行40Ar/39Ar快中子活化法测年,其坪年龄为19.67 Ma±0.52 Ma和15.66 Ma±0.31 Ma,等时年龄为19.84 Ma±0.40 Ma和14.29 Ma±0.29 Ma。测试结果及区域研究表明,冈底斯—雅鲁藏布江成矿带存在晚喜马拉雅期的岩浆活动,并可能为这一地区的铜金矿化提供热源和物源。  相似文献   
56.
快速准确地识别岩体裂隙的三维分布特征是西南山区铁路防灾减灾的关键.本研究提出了一套岩体裂隙可视化新方法,基于测窗调查的裂隙数据,依托球坐标及极射赤平投影进行数字化处理及降维,利用K-Means++聚类算法、Fisher分布模型和蒙特卡洛模拟,完成裂隙产状数据的自动分组和模拟,最后运用Python及圆盘模型实现岩体裂隙三维可视化.本研究采用坐标变换和三角网格曲面的方式,更有利于与其他三维建模软件嵌套分析.水电站工程的先行应用研究表明产状数据服从Fisher分布,本文的模型相对于传统玫瑰花图和施密特图有着一定的优势.因此,本文建立的岩体裂隙模型具有直观快速反映区域裂隙网络三维分布特征的优点,研究成果可以直接服务于西南山区铁路施工阶段隧道掌子面及洞壁的节理裂隙三维识别以及防灾减灾研究.   相似文献   
57.
本文利用1961~2012年夏季西北地区东部(32~40°N,100~110°E)156个站点逐日降水资料,以及1982~2012年青藏高原70个站点的地面感热观测资料,采用EOF、相关分析等方法分析了西北地区东部夏季降水、青藏高原冬末春初(2~4月)地面感热的时空变化特征,讨论了西北地区东部夏季降水对于青藏高原冬末春初地面感热异常的响应,通过环流场分析高原感热异常对西北东部夏季降水的影响成因。结果表明:高原东部冬末春初地面感热偏强时,西北东部地区北部降水偏少,东南部和西南部降水偏多;反之,西北东部北部降水偏多,东南部和西南部降水偏少。   相似文献   
58.
罗布  边多  白玛  拉巴 《冰川冻土》2020,42(2):653-661
利用多源气象要素数据估算了1998 - 2016年的藏北高寒牧区植被净初级生产力(Net Primary Productivity, NPP)的变化特征并预估了其在2 ℃全球变暖背景下的变化趋势, 结果表明: 研究区域71.9%的NPP呈上升趋势, 仅中部部分区域有下降趋势; 平均NPP以每年0.54%速率增加, 同期气温和降水均呈增加趋势, NPP和气温在2007前后有显著增加趋势; 总体来说降水是影响NPP的最主要气候因子, 且随着纬度升高其影响越来越大, 气温对于NPP的影响从东南向西北依次递减, 在西北地区出现弱的负相关; 在2 ℃全球变暖大背景下, 分析得出IPCC“典型浓度路径”(Representative Concentration Pathways, 简称RCPs)三种温室气体排放情景下(RCP2.6、 RCP4.5、 RCP8.5)的NPP平均状态几乎没有变化, 其影响仅限于对研究区东南部的较高NPP有较小的改善作用, 其作用依次为>, 表明气候变暖对研究区NPP影响有限, 预估结果对认清高原地区气候变化下NPP时空变化特征有重要意义。  相似文献   
59.
以原始地质资料为基础,结合电子探针数据和岩石地球化学分析,从岩石学、岩相学和地球化学的角度分析了甲玛矿区二长花岗斑岩岩浆-热液过渡的特征及成矿作用。甲玛二长花岗斑岩岩浆热液过渡以电气石-钠/钙硅酸盐化、似伟晶细晶岩壳(脉)和具"冰长石"结构特征的钾长石、蠕状石及显微晶洞(或空腔)构造为特征;地球化学上表现为Na、K的反消长和挥发分含量的涨落,并伴随着Cu、Mo、Au等成矿物质从晚期岩浆的逃逸。甲玛二长花岗斑岩的岩浆热液过渡过程可划分为以超临界流体为代表的液相不混溶阶段和超临界流体逃逸为特征的气液分馏阶段。其中前者决定了岩浆晚期的矿质分馏程度,而后者控制了含矿蒸汽和成矿热液流体的形成,进而分别形成浸染状矿化和脉状矿化。  相似文献   
60.
西藏甲玛—驱龙地区叶巴岩组构造学特征   总被引:1,自引:0,他引:1  
通过野外地质调查和定向薄片显微构造研究,对甲玛—驱龙地区叶巴岩组的变形、运动学和动力学进行了初步研究,指出:①原叶巴组实为构造岩,应称"叶巴岩组",区内可分为四个岩段,构成两个变火山-沉积旋回;②叶巴岩组在宏观上表现为自北而南的轴面总体北倾的复背斜和复向斜;③叶巴岩组经历过两期韧性变形,多期韧脆性变形,且邻甲玛—卡军果推-滑覆构造系主推覆面的C岩段还多经历了三期较浅层次的面理置换和一期膝折变形;④叶巴岩组两期韧性变形动向相反,第一期为上层面自南向北的剪切,第二期为上层面自北向南的剪切,第二期韧性剪切与随后的韧脆性变形具多阶段递进特点,在向南推覆褶皱至较浅层次后还经历多期脆-韧性变形,尤其是邻甲玛—卡军果推-滑覆构造系主推覆面部位;⑤叶巴岩组第一期韧性变形发生于94—85Ma±的晚白垩世土伦期—康尼亚克期,与雅鲁藏布江洋壳向北俯冲导致的弧后裂谷伸展有关;第二期韧性变形及其后主要的韧脆性变形发生于50Ma±的始新世,与印度-欧亚板块碰撞事件有关,碰撞后的构造作用则导致多期脆-韧性变形的叠加。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号