首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   28篇
  国内免费   47篇
大气科学   132篇
地球物理   1篇
综合类   15篇
自然地理   4篇
  2024年   1篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   8篇
  2018年   13篇
  2017年   7篇
  2016年   8篇
  2015年   13篇
  2014年   12篇
  2013年   9篇
  2012年   15篇
  2011年   10篇
  2010年   11篇
  2009年   8篇
  2008年   9篇
  2007年   2篇
  2006年   1篇
  2004年   2篇
  2003年   6篇
  2002年   3篇
  2001年   3篇
  1999年   3篇
  1997年   1篇
排序方式: 共有152条查询结果,搜索用时 31 毫秒
51.
高桥公式在拉萨地区的适用性及其修正   总被引:3,自引:0,他引:3       下载免费PDF全文
选用1993—1999年拉萨站资料,通过比较多种计算方法得到的潜在蒸散量、高桥浩一郎在1979年提出的基于温度和降水量计算蒸发量的公式所得到的蒸发量以及中日季风试验资料的观测值可知:受温度、水分及相对湿度的影响,潜在蒸散量在5月达到最大值,而蒸发量的最大值则出现在7月。由于青藏高原存在冻土及融冰化雪的特殊现象,水分来源并不完全依靠于降水,所以由高桥浩一郎公式的计算值与观测值之间存在较大差距,温度越高,差值越大;鉴于温度与该差值呈正比关系,可将温度划分为小于0℃,0~5℃,5~10℃,10~15℃,大于15℃共5个等级,在不改变高桥浩一郎公式原有系数的基础上,同时考虑不同的系数对降水量进行修正,修正后的结果明显好于修正前,与观测值更接近。  相似文献   
52.
华维  范广洲  王炳赟 《大气科学》2012,36(4):784-794
根据NCEP/NCAR、NCEP/DOE和ERA40再分析资料以及中国596个台站逐月降水观测资料,利用相关分析、小波分析和交叉谱分析等统计方法,分析了近几十年青藏高原夏季风变化趋势及其对中国东部降水的影响,探讨了影响高原夏季风长期变化的可能原因.结果表明:高原夏季风具有年际和年代际的多时间尺度变化特征,在1958~2...  相似文献   
53.
我国夏季降水与青藏高原春季NDVI的关系   总被引:6,自引:1,他引:5       下载免费PDF全文
利用1982年1月-2001年12月NDVI资料、台站降水资料和NCEP/NCAR再分析资料, 通过相关分析和合成分析方法, 初步分析了我国夏季降水与青藏高原春季植被的关系及可能机理。结果发现:青藏高原春季NDVI与我国夏季降水相关系数从南到北呈西北-东南向“ + - +”带状分布。合成分析也表明:青藏高原春季NDVI大、小值年降水年内分布也存在明显差异。降水的上述差异, 可能是由于青藏高原春季NDVI变化导致热源效应改变, 引起大气环流变化造成的。对环流分析也发现:大气环流的变化特征与降水变化表现出很好的一致性。  相似文献   
54.
利用卫星遥感植被归一化指数(NDVI)资料和西南地区96个实测台站的月平均气温以及降水资料,初步分析了西南地区植被变化与气温及降水的关系。结果表明:近20年来西南地区植被覆盖状况较好,其中夏季植被覆盖最好,冬季植被分布空间差异最大;西南地区植被整体呈增加趋势,同时也存在较明显的季节和区域差异:春季西南大部分地区植被以增加为主,夏季、秋季全区以减少为主,冬季则以增加为主且存在明显的东西反向特征,东部减少西部增加。时滞互相关分析表明:西南地区11~2月份的植被对超前其1~2个月的气温以及夏季的植被对春季气温的敏感性比较大,3~4月的植被生长对上年夏季的降水敏感性比较大;同期时,1~3月植被和气温为正相关关系,6~9月的植被生长和降水为明显的负相关关系;在植被超前气候的条件下,1~2月的植被和滞后1~2个月的气温呈正相关关系,与滞后1个月的降水有明显的负相关关系。  相似文献   
55.
西南地区近40a气温变化的时空特征分析   总被引:13,自引:10,他引:3  
利用西南地区96个测站近40 a的月平均、月平均最高、月平均最低气温资料,采用主成分分析、旋转主成分分析、小波分析、Mann-Kendall等方法对西南地区气温变化的时空特征进行了分析.结果表明:西南地区年平均、年平均最高、年平均最低气温的空间变化均具有很好的整体一致性,反映了年平均和年平均最高气温在1960s到1980s中期经历了一个由暖变冷的过程后,1980s后期开始呈现明显上升趋势,而年平均最低气温从1970s就开始呈单调上升趋势.青藏高原东侧山脉走向对气温变化的东西差异具有十分明显的影响.气温的主要空间异常可分为4个敏感区.小波分析表明,西南地区气温整体变化在近40 a主要存在准8 a的周期,其中四川盆地东部的气温在整个时段存在准20 a和准8~9 a的周期.  相似文献   
56.
区域气候模式RegCM3对中国夏季降水的模拟   总被引:5,自引:0,他引:5  
利用意大利国际理论物理中心(ICTP)最新发布的区域气候模式RegCM3检验我国包括青藏高原地区夏季降水的模拟能力。初始值及边界值取自美国国家环境预测中心(NCEP)和国家大气中心(NCAR)的全球再分析资料。模式积分时间为2005年5月1日到2005年8月31日,考虑到模式的“spin-up”时间,只对6月1日-8月31日的模式结果进行分析。模式水平分辨率取为60km,范围包括整个青藏高原在内的我国及周边地区(14°-55°N,70°-140°E)。结果表明:RegCM3具有模拟我国夏季降水主要分布特征的能力,尤其在观测站点稀少的青藏高原地区可提供局地降水分布的较可靠信息。模式较好地模拟了包括整个青藏高原在内的我国区域降水的月际尺度变化和空间分布等基本特征,但对我国东南地区的夏季降水模拟能力有待进一步提高。  相似文献   
57.
利用ECMWF(欧洲中期天气预报中心)月平均比湿资料,通过直接对比湿q进行多年平均计算、气候倾向率分析、EOF分解等,研究了1979-2015年青藏高原(下称高原)地区大气蕴含潜热的时空分布特征及年际、年代际变化特征。结果表明,高原大气蕴含潜热从低层向高层逐渐减少,且夏季蕴含潜热最多,其次为春、秋,且两季分布特征大致相似,冬季蕴含潜热最少,各季大值均集中在高原东南部及南部;蕴含潜热整体呈增长的趋势,夏季增长最快,冬季最慢;高原西部和云贵高原地区大气蕴含潜热均有不同程度的减小,夏季减小最快,冬季减小最慢;EOF分析中,各积分层以及整层[地表到500 hPa积分(第一积分层);500~400 hPa积分(第二积分层);400~300 hPa积分(第三积分层);地表到300 hPa积分(整层)]在第一模态下均大致呈正分布;在第二模态下均呈“正-负”的偶极子分布(其中第一积分层和整层为西南—东北“正-负”分布,其余两层为东—西“正-负”分布),说明蕴含潜热在这两种分布状态中的变化趋势均存在反相关系);在第三模态下均在西北—东南方向为“正-负-正”的分布。各积分层以及整层除第二模态年际变化相对明显外,其他两个模态年际变化均不明显。  相似文献   
58.
夏季青藏高原不同层次土壤湿度时空变化特征   总被引:1,自引:0,他引:1  
孙夏  范广洲  张永莉  赖欣 《干旱气象》2019,37(2):252-261
基于1950—2009年GLDAS Noah 2.0逐月平均土壤湿度资料,分析了夏季青藏高原各层土壤湿度的时空变化特征。结果表明:(1)夏季青藏高原各层土壤湿度整体上呈自南向北递减的空间分布,但在高原中部地区中层、深层土壤湿度均有一个极值中心。(2)夏季高原中东部地区表层、浅层、中层、深层土壤湿度之间的差值(深层与中层除外)均表现为"上湿下干"的垂直分布,而中部偏西地区各层土壤湿度差值则表现为"下湿上干"的垂直分布。(3)夏季高原各层土壤湿度第一模态均呈现西南—东北反向型分布,且随着深度的增加,零线向东北移。(4)夏季高原主体各层土壤湿度的年际变化特征明显,除深层(呈现不显著增加趋势)外整体均呈现显著下降趋势,前期土壤湿度较高,后期较低。从空间趋势分布来看,除深层土壤湿度在高原中部有增大趋势外,各层土壤湿度变化趋势在高原上均以减小为主。(5)去趋势后,除深层外其他各层土壤湿度最大年际变化幅度在高原中部随着土层的增加而减小,而高原中东部则随土层的增加而增大。  相似文献   
59.
GRAPES模式中三维科氏力计算及其效果评估   总被引:1,自引:0,他引:1  
作为一种连续可压缩流体,大气具有分层流体特性,其状态变化可由牛顿第二定律、热力学第一定律、连续方程和理想大气状态方程组成的偏微分方程组描述。为了更加精细地描述GRAPES全球模式的动力过程,使模式大气更接近真实大气,在全球非静力模式GRAPES中考虑三维科氏力作用,通过重新构建半隐式半拉格朗日求解大气动力方程组的亥姆霍兹方程系数,在不改变求解方案的前提下实现对GRAPES模式动力过程的更新。然后采用在静力平衡基础上建立的三维大气理想试验对新的动力过程进行数值试验,检验其计算效果和数值稳定性。结果显示,考虑三维科氏力的模式动力框架计算稳定,提高了三维标量和矢量场的计算精度,在水平1°×1°分辨率模式中,平衡流试验第15天计算结果标量场Π'的l1和l2误差分别为0.00023和0.0004,而三维矢量场 V 的l1和l2误差分别为0.002和0.003,均较原模式误差小一个数量级。在罗斯贝-豪威兹波、地形罗斯贝波和斜压波试验中,新框架均表现出很高的计算稳定性和良好的计算效果。   相似文献   
60.
利用1980 2015年ERA-Interim全球0.25°×0.25°月平均再分析温度场、风场、垂直速度场资料,分析了青藏高原(下称高原)上空垂直温度梯度(T_G)特征及其成因。结果表明:(1)高原主体地区温度随高度升高而降低的程度要比周边地区大,东西两侧的温度随高度升高而降低得慢;(2)对流层中下层高原边缘陡峭地形区的T_G变化程度比周边地区大,对流层中上层各层T_G呈水平均匀分布;(3)非高原地区温度随高度升高而降低的程度略大于高原地区;在冬春季,两个区域的T_G对外界因素变化的反应都很灵敏;(4)初步成因分析显示,对流层中下层高原边缘地区,非绝热加热(冷却)作用越强时,T_G越小(大),温度随高度升高而降低的程度就越小(大);对流层中上层,高原部分区域非绝热加热(冷却)作用越强,T_G越大(小),温度随高度升高而降低的程度越大(小);在高原整层大气中,非绝热加热(冷却)作用是引起温度随高度升高而降低得慢(快)的主要因素。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号