首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   4篇
  国内免费   1篇
测绘学   1篇
大气科学   6篇
地球物理   33篇
地质学   33篇
海洋学   13篇
天文学   20篇
综合类   6篇
自然地理   6篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   7篇
  2013年   2篇
  2012年   5篇
  2011年   3篇
  2010年   5篇
  2009年   6篇
  2008年   8篇
  2007年   4篇
  2006年   9篇
  2005年   2篇
  2004年   7篇
  2003年   7篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1970年   1篇
排序方式: 共有118条查询结果,搜索用时 31 毫秒
61.
In this paper, a new model for a single reservoir operation optimization is proposed. The proposed model can design the optimal operation policy of a reservoir with explicit consideration of drought duration. The authors model this problem by formulating a single-stage loss function as a function of both the reservoir release and drought duration. Thereby the expected loss per period which is calculated based on the above extended single-stage loss function is minimized in infinite time horizon on the basis of Markov decision process (MDP) theory. The reliability indices are estimated as expected loss per period for specified extended loss functions. Finally, the features of the proposed model are illustrated through numerical analysis.  相似文献   
62.
 An experimental technique to make real-time observations at high pressure and temperature of the diamond-forming process in candidate material of mantle fluids as a catalyst has been established for the first time. In situ X-ray diffraction experiments using synchrotron radiation have been performed upon a mixture of brucite [Mg(OH)2] and graphite as starting material. Brucite decomposes into periclase (MgO) and H2O at 3.6 GPa and 1050 °C while no periclase is formed after the decomposition of brucite at 6.2 GPa and 1150 °C, indicating that the solubility of the MgO component in H2O greatly increases with increasing pressure. The conversion of graphite to diamond in aqueous fluid has been observed at 7.7 GPa and 1835 °C. Time-dependent X-ray diffraction profiles for this transformation have been successfully obtained. Received: 17 July 2001 / Accepted: 18 February 2002  相似文献   
63.
Abstract The tectonic history of the Okcheon Metamorphic Belt (OMB) is a key to understanding the tectonic relationship between South Korea, China and Japan. The petrochemistry of 150 psammitic rocks in the OMB indicates that the depositional environment progressively deepened towards the northwest. These data, combined with the distribution pattern of oxide minerals and the abundance of carbonaceous material, support a half‐graben basin model for the OMB. Biotite and muscovite K–Ar dates from metasediments in the central OMB range from 102 to 277 Ma. K–Ar ages of 142–194 Ma are widespread throughout the area, whereas the older ages of 216–277 Ma are restricted to the metasediments of the middle part of the central OMB. The younger (Cretaceous) ages are only found in metasediments that are situated near the Cretaceous granite intrusions. The 216–277 Ma dates from weakly deformed areas represent cooling ages of M1 intermediate pressure/temperature (P/T) metamorphism. The relationship between age distribution and deformation pattern indicates that the Jurassic muscovite and biotite dates can be interpreted as complete resetting ages, caused by thermal and deformational activities associated with Jurassic granite plutonism. Well‐defined 40Ar/39Ar plateau ages of 155–169 Ma for micas from both metasediments and granitic rocks can be correlated with the main Jurassic K–Ar mica ages (149–194 Ma). U–Pb zircon dates for biotite granite from the southwest OMB are 167–169 Ma. On the basis of the predominantly Jurassic igneous and metamorphic ages and the uniformity of d002 values for carbonaceous materials in the study area, it is suggested that the OMB has undergone amphibolite facies M2 metamorphism after M1 metamorphism. This low P/T M2 regional thermal metamorphism may have been caused by the regional intrusion of Jurassic granites. The OMB may have undergone tectono‐metamorphic evolution as follows: (i) the OMB was initiated as an intraplate rift in the Neoproterozoic during break‐up of Rodinia, and may represent the extension of Huanan aulacogen within the South China block; (ii) sedimentation continued from the Neoproterozoic to the Ordovician, perhaps with several unconformities; (iii) M1 intermediate P/T metamorphism occurred during the Late Paleozoic due to compression caused by collision between the North and South China blocks in an area peripheral to the collision zone; and (iv) during the Early to Middle Jurassic, north‐westward subduction of the Farallon‐Izanagi Plate under the Asian Plate resulted in widespread intrusion of granites, which triggered M2 low P/T regional thermal metamorphism in the OMB. This event also formed the dextral Honam shear zone at the boundary between the OMB and Precambrian Yeongnam massif.  相似文献   
64.
A shallow M6.4 inland earthquake occurred on 26 July 2003 in the northern part of Miyagi Prefecture, northeastern Japan. This earthquake was a typical inland thrust earthquake, a type that is common in NE Japan. We obtained a detailed seismic velocity structure in the focal area of this earthquake by the double-difference tomography method. Arrival-time data came from temporary seismic stations deployed above the mainshock fault plane. Both the P-wave and S-wave velocities in the hanging wall were lower than those in the footwall. Aftershocks were aligned along a zone where the seismic velocity changes rapidly. This is consistent with the interpretation that the 2003 northern Miyagi earthquake occurred along a fault that acted as a normal fault in the Miocene and has been reactivated as a reverse fault under the present compressional stress regime. The large slip area by the main shock rupture (asperity) corresponds to an area with relatively high P- and S-wave velocities. A zone with low Vp/Vs was detected along the aftershock area. One of the possible causes of this low-Vp/Vs zone is the existence of high-aspect-ratio pores that contain water. Hypocenters of the main shock, largest foreshock, and largest aftershock are also located within the low-Vp/Vs zone.  相似文献   
65.
66.
Deep-sea benthic ecosystems are mainly sustained by sinking organic materials that are produced in the euphotic zone. “Benthic-pelagic coupling” is the key to understanding both material cycles and benthic ecology in deep-sea environments, in particular in topographically flat open oceanic settings. However, it remains unclear whether “benthic-pelagic coupling” exists in eutrophic deep-sea environments at the ocean margins where areas of undulating and steep bottom topography are partly closely surrounded by land. Land-locked deep-sea settings may be characterized by different particle behaviors both in the water column and in relation to submarine topography. Mechanisms of particle accumulation may be different from those found in open ocean sedimentary systems. An interdisciplinary programme, “Project Sagami”, was carried out to understand seasonal carbon cycling in a eutrophic deep-sea environment (Sagami Bay) with steep bottom topography along the western margin of the Pacific, off central Japan. We collected data from ocean color photographs obtained using a sea observation satellite, surface water samples, hydrographic casts with turbidity sensor, sediment trap moorings and multiple core samplings at a permanent station in the central part of Sagami Bay between 1997 and 1998. Bottom nepheloid layers were also observed in video images recorded at a real-time, sea-floor observatory off Hatsushima in Sagami Bay. Distinct spring blooms were observed during mid-February through May in 1997. Mass flux deposited in sediment traps did not show a distinct spring bloom signal because of the influence of resuspended materials. However, dense clouds of suspended particles were observed only in the spring in the benthic nepheloid layer. This phenomenon corresponds well to the increased deposition of phytodetritus after the spring bloom. A phytodetrital layer started to form on the sediment surface about two weeks after the start of the spring bloom. Chlorophyll-a was detected in the top 2 cm of the sediment only when a phytodetritus layer was present. Protozoan and metazoan meiobenthos increased in density after phytodetritus deposition. Thus, “benthic-pelagic coupling” was certainly observed even in a marginal ocean environment with undulated bottom topography. Seasonal changes in features of the sediment-water interface were also documented.  相似文献   
67.
Stability and phase relations of coexisting enstatite and H2 fluid were investigated in the pressure and temperature regions of 3.1–13.9 GPa and 1500–2000 K using laser-heated diamond-anvil cells. XRD measurements showed decomposition of enstatite upon heating to form forsterite, periclase, and coesite/stishovite. In the recovered samples, SiO2 grains were found at the margin of the heating hot spot, suggesting that the SiO2 component dissolved in the H2 fluid during heating, then precipitated when its solubility decreased with decreasing temperature. Raman and infrared spectra of the coexisting fluid phase revealed that SiH4 and H2O molecules formed through the reaction between dissolved SiO2 and H2. In contrast, forsterite and periclase crystals were found within the hot spot, which were assumed to have replaced the initial orthoenstatite crystals without dissolution. Preferential dissolution of SiO2 components of enstatite in H2 fluid, as well as that observed in the forsterite H2 system and the quartz H2 system, implies that H2-rich fluid enhances Mg/Si fractionation between the fluid and solid phases of mantle minerals.  相似文献   
68.
We present a method to estimate the spatial distribution of dredged material disposed of at sea. Using both dredged sediments and samples of sea-bed sediment from near the Rame Head disposal site, Plymouth, UK, we applied entropy analysis to the <63 μm sediment fraction and combined the results with the trace metal data in the same fraction, to form a series of groups. We interpret the distribution of sediments in one group (F1) to approximate the distribution of material affected by the disposal site. This distribution includes locations close to the disposal site, and also locations <4 km to the SE and SW, <6 km to the NW and <2 km to the N. This approach demonstrates the feasibility of using trace metal analysis of particular grain size fractions to reduce uncertainty in interpreting the spatial distribution of impacts of dredge disposal.  相似文献   
69.
70.
The Yamato (j), (k), (l), and (m) meteorites collected from near the Yamato Mountains in December, 1973, are respectively an H-4 and L-5 chondrite, a howardite, and an L-5 chondrite. Yamato (l), the howardite, is a polymict breccia of diogenite and eucrite clasts. Olivine in the chondrites ranges in composition from Fo75 to Fo80, whereas in the howardite, where it is rare, the composition is about Fo60. Pyroxenes in the chondrites are mostly orthopyroxenes and (En83), while the pyroxenes in the howardite are more complex, comprising orthopyroxene, pigeonite, augite, and rare clinohypersthene (in the order of decreasing abundance), with the range from En80 to En37. They form a definite trend, probably formed by the fractional crystallization of the parental magma of the achondrite, and later subjected to exsolution phenomena during the slow cooling. Plagioclase is high-temperature oligoclase in the chondrites, and anorthite in the howardite. Maskelynitization is sometimes observed. Other shock effects are also observed. Opaque phases consist mostly of nickel-iron, troilite, chromite, and rarely ilmenite. Intergrowth of these minerals are common. The accessory minerals comprise quartz, cristobalite, apatite, spinel, and rare uranium-bearing minerals. The bulk composition and genetic significance are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号