首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   259篇
  免费   95篇
  国内免费   40篇
测绘学   5篇
地球物理   163篇
地质学   129篇
海洋学   16篇
综合类   21篇
自然地理   60篇
  2024年   2篇
  2023年   2篇
  2022年   9篇
  2021年   5篇
  2020年   9篇
  2019年   6篇
  2018年   12篇
  2017年   10篇
  2016年   14篇
  2015年   13篇
  2014年   22篇
  2013年   17篇
  2012年   10篇
  2011年   14篇
  2010年   7篇
  2009年   17篇
  2008年   6篇
  2007年   26篇
  2006年   21篇
  2005年   12篇
  2004年   14篇
  2003年   14篇
  2002年   18篇
  2001年   11篇
  2000年   19篇
  1999年   9篇
  1998年   12篇
  1997年   12篇
  1996年   7篇
  1995年   5篇
  1994年   8篇
  1993年   4篇
  1992年   7篇
  1991年   2篇
  1990年   5篇
  1989年   7篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1978年   1篇
  1954年   1篇
排序方式: 共有394条查询结果,搜索用时 31 毫秒
71.
青藏高原东北缘地质构造背景及地壳结构研究   总被引:31,自引:3,他引:28       下载免费PDF全文
利用地质和人工地震测深剖面资料,研究了青藏高原东北缘的地质构造背景、地壳结构和莫霍面形态.主要结果是:① 给出了青藏高原东北缘的大地构造分区和主要深大断裂的特征;② 主要利用人工地震测深资料得到莫霍面的基本特征;③ 地表断裂与莫霍面的某些特征有较好的对应关系,这种复杂的地壳结构可能是强烈地震的孕育环境.   相似文献   
72.
准噶尔造山带地壳结构复杂 ,构造形态多样。根据地球物理资料 ,特别是国家“30 5”项目可可托海至阿克塞地学大断面反映出 ,准噶尔造山带至少由四个不同时代、不同性质的地质块体拼合而成。地体间为深断裂或超岩石圈深断裂分隔。在地块内部不同层次之间也常有巨型水平剪切或滑脱带存在 ,造成了准噶尔造山带在垂向上有明显的分层性 ,在横向上具有不均一性和不连续性。  相似文献   
73.
川西高温水热活动区深部热结构的地球物理分析   总被引:1,自引:0,他引:1       下载免费PDF全文
川西高温水热活动区是地热学研究的典型地区之一,该区温泉、热泉点分布广泛,这些温泉大多沿北西-南东向的金沙江断裂、德格-乡城断裂、甘孜-理塘断裂、鲜水河三条主断裂呈条带状分布.对此高温水热活动区开展地热学分析,是研究青藏高原"东构造结"深部地球动力学过程、开发利用川西高原地热资源的重要基础,具有重要的科学研究意义和实际应用价值.本文针对实测氦同位素所发现的壳幔热结构比,依据重力、航空磁法、地震资料,采用反演莫霍面、居里面深度等方法,对川西高温水热活动区的深部热结构进行了分析.同时对中高温热泉密集出露的巴塘、理塘以及康定水热活动区的典型壳幔热流构与深部背景场进行了对比研究.结果表明,地表氦同位素热流估算的深部热流结构与地球物理异常结果保持较好的对应关系.川西地区热流结构中地壳、地幔的热贡献比较接近:巴塘地区平均Qc/Q=51.38%、理塘地区平均Qc/Q=54.39%、康定地区平均Qc/Q=42.42%.川西地区表现出了"温壳温幔"型的深部热结构,但温地壳背景下形成较高地表热流的原因有待进一步研究.  相似文献   
74.
通过对单层模型反射和透射系数的推导,提出了利用接收函数一次转换波和多次波确定Moho面速度和密度跃变的速度-密度跃变(δβ-δρ)扫描叠加方法.利用反射率法计算了不同模型的远震理论地震图,按照与处理实际观测波形一致的方法和流程计算了理论接收函数;根据不同模型数值试验结果,深入分析了界面速度和密度跃变对接收函数震相幅度的影响.利用(δβ-δρ)扫描叠加方法,对理论接收函数进行了数值试验,结果证明了该方法的可行性.最后将该方法应用于位于青藏高原东北缘的高台(GTA)台和兰州(LZH)台,确定了两个台站下方Moho面的速度跃变分别约为(19±1)%和(20±1)%,密度跃变最小值为(4±2)%和(6±2)%.  相似文献   
75.
四川盆地深部地壳结构——深地震反射剖面探测   总被引:2,自引:0,他引:2       下载免费PDF全文
四川盆地位于扬子地块的西北部,被褶皱构造带所围绕,受周缘构造带的侧向挤压作用,盆地卷入了多期次和多边界的构造变形,为开展盆山耦合作用及多边界、多期次构造叠加与复合关系的研究提供了不可多得的理想野外实验室.为揭示四川盆地地壳结构,本文通过对3条不同时间采集的深地震反射剖面数据进行拼接联线处理,获得跨越四川盆地的330 km深地震反射偏移成果剖面,揭示了四川盆地地壳上地幔细结构:沉积层从西北向东南逐渐变薄,在龙门山前沉积层厚度超过15 km,在华蓥山下沉积层减薄到~8 km,且褶皱变形形成华蓥山薄皮褶皱冲断带;莫霍面出现在13~15 s(双程走时),埋深约40~45 km;并发现从下地壳延伸至地幔的东南向的倾斜反射,从13 s向下延伸至18 s,结合四川盆地及其周边地区其他地球物理和地球化学花岗岩同位素年龄等资料,我们认为这些倾斜反射层是扬子克拉通地台西北缘发生的新元古代俯冲的遗迹.  相似文献   
76.
羌塘盆地是我国最大的海相盆地.本文根据在羌塘盆地内布设的27个宽频带地震观测台站记录的远震波形数据,利用非线性复谱比反演算法得到各台站下方100 km深度范围内S波速度结构.结果表明.羌塘地区Moho深度较为平缓,平均深度为61 km;北羌塘地壳内低速层广泛分布;北羌塘具有两个较大的沉积盆地,龙尾错和白滩湖坳陷,沉积厚度分别有10 km和15 km.尽管北羌塘下地壳受到强烈的新生代火山岩作用改造,但是这种深部岩浆热作用会加速烃源岩中有机质的热演化历程.北羌塘两个盆地具有很好的油气前景.与北羌塘低速层分布相比,南羌塘下低速层更深,可能与班公怒江洋于中生代的俯冲消减及拉萨地体北向俯冲有关.  相似文献   
77.
谢弘臻  王九洋 《中国地震》2018,34(4):704-712
对不同震中距台站的记录采用入射角法、s PL-Pg等震相到时差,对辽宁地震台网记录采用单纯形法研究了辽阳灯塔5.1级地震的震源深度。结果表明,该地震震源深度应为14km,略大于目录给出的10km。利用四川松潘台、青海湟源台的远台记录也得到同样的结果。通过对辽宁1970年以来5.0级以上地震进行分析发现,辽宁地震的震源分布存在东西两侧偏深、中部偏浅、中部地区南浅北深的统计规律,灯塔地震震源深度符合该统计规律。  相似文献   
78.
基于我们布设的探测深俯冲的中国东北地震台阵NECsaids台阵和固定地震台长时段的观测记录及NECESSArray流动台阵共计152个台站数据提取得到的33752条P波接收函数,采用H-κ叠加分析和共转换点(CCP)叠加成像等方法进行统一分析处理,并汇集他人接收函数研究结果得到中国东北东南部地区迄今为止最高分辨率的地壳厚度和平均波速比分布图像.对中国东北东南部地区不同构造体的地壳特征综合分析研究表明:研究区不同陆块的地壳属性存在明显差别,张广才岭地块中南部的地壳厚度和波速比与华北克拉通东北缘相当,地壳厚度同地表地形之间显示有明显的正相关关系;松辽地块东南缘地壳最薄、波速比最高,地壳厚度同壳内波速比之间显示出明显的负相关关系;兴凯地块西部地区的地壳结构表现为稍厚的地壳厚度和研究区内最低的壳内波速比,其地壳厚度同壳内波速比之间亦显示出明显的负相关关系;佳木斯地块西南缘在具有"正常"的壳内波速比同时地壳最厚.研究区内的郯庐断裂带北延段在切穿其下Moho面的同时表现出南北分段的特征:北段(44.4°N—47°N)两分支之下的Moho面整体下凹,而南段(41.5°N—43.3°N)两分支之下的Moho面则整体上隆.长白山天池火山下方表现为Moho面下凹沉落及高壳内波速比特征,推测其壳内岩浆囊很可能存在于火山口东北隅至少10 km的范围内.  相似文献   
79.
青藏高原东南缘Moho面速度密度跃变研究   总被引:1,自引:0,他引:1       下载免费PDF全文
青藏高原东南缘地下深部结构的研究对了解青藏高原的变形机制和动力学过程具有重要意义.本文利用四川、云南固定台站记录到的远震波形资料,首先采用接收函数H-k叠加方法获得青藏高原东南缘台站下方的地壳厚度和波速比.进而利用接收函数一次转换波和多次波幅度信息确定了青藏高原东南缘Moho面上的S波速度和密度跃变.研究结果表明:研究区由南到北地壳厚度逐渐增加,从永德、沧源、孟连地区的33 km左右增至巴塘地区的69.7 km左右,厚度变化了近乎37 km.四川盆地和松潘甘孜块体南部的姑咱地区具有高泊松比、速度密度跃变较小特征,表明这两个地区含有较多铁镁物质.腾冲地区、龙门山西侧的汶川地区、四川盆地西南缘的沐川地区以及则木河断裂的石门坎至东川地区同属于高泊松比、速度密度跃变较大,显示这些地区壳内存在部分熔融.  相似文献   
80.
Longmenshan fault zone is a famous orogenic belt and seismic zone in the southeastern Tibetan plateau of China. The Wenchuan MS8.0 earthquake on May 12, 2008 and the Ya'an MS7.0 earthquake on April 20, 2013 occurred in the central-southern part of Longmenshan fault zone. Because of its complex geological structures, frequent earthquakes and special geographical locations, it has attracted the attention of many scholars around the world. Satellite gravity field has advantages in studying gravity field and gravity anomaly changes before and after earthquake. It covers wide range, can be updated regularly, without difficulty in terms of geographical restrictions, and is not affected by environmental factors such as weather, terrain and traffic. Therefore, the use of high-precision Earth satellite gravity field data inversion and interpretation of seismic phenomena has become a hot topic in earth science research. In order to understand satellite gravity field characteristics of the Longmenshan earthquake zone in the southeastern Tibetan plateau and its seismogenic mechanism of earthquake disasters, the satellite gravity data was used to present the terrain information of the study area. Then, by solving the regional gravity anomaly of the Moho surface, the crustal thickness of the study area was inverted, and the GPS velocity field data was used to detect the crustal deformation rate and direction of the study area. Combining the tectonic setting of the Longmenshan fault zone and the existing deep seismic sounding results of the previous researchers, the dynamic characteristics of the gravity time-varying field after the earthquake in the Longmenshan earthquake zone was analyzed and the mechanism of the earthquake was explored. The results show that the eastward flow of deep materials in the eastern Tibetan plateau is strongly blocked at the Longmenshan fault zone. The continuous collision and extrusion process result in a "deep drop zone" in the Moho surface, and the long-term stress effect is conducive to the formation of thrust-nappe and strike-slip structures. The Longmenshan earthquake zone was in the large-scale gradient zone of gravity change before the earthquake, the deep plastic fluid material transport velocity differed greatly, the fluid pressure was enhanced, and the rock mechanical strength in the seismic source region was weakened, which contributed to the intrusion of crustal fluid and the upwelling of the asthenosphere. As a result, the continuous accumulation of material and energy eventually led to continuous stress imbalance in the deep part and shear rupture of the deep weak structure, causing the occurrence of the thrust-nappe and strike-slip earthquake.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号