首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   535篇
  免费   25篇
  国内免费   18篇
测绘学   76篇
大气科学   15篇
地球物理   17篇
地质学   12篇
海洋学   9篇
天文学   427篇
综合类   19篇
自然地理   3篇
  2024年   4篇
  2023年   8篇
  2022年   11篇
  2021年   12篇
  2020年   9篇
  2019年   5篇
  2018年   12篇
  2017年   9篇
  2016年   7篇
  2015年   7篇
  2014年   14篇
  2013年   14篇
  2012年   16篇
  2011年   20篇
  2010年   15篇
  2009年   51篇
  2008年   69篇
  2007年   62篇
  2006年   43篇
  2005年   33篇
  2004年   38篇
  2003年   29篇
  2002年   16篇
  2001年   19篇
  2000年   16篇
  1999年   10篇
  1998年   6篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   5篇
  1991年   4篇
  1990年   2篇
  1987年   1篇
  1986年   2篇
  1954年   1篇
排序方式: 共有578条查询结果,搜索用时 78 毫秒
71.
Data on three recently discovered satellites of Uranus are used to determine basic evolutional parameters of their orbits: the extreme eccentricities and inclinations, as well as the circulation periods of the pericenter arguments and of the longitudes of the ascending nodes. The evolution is mainly investigated by analytically solving Hill’s double-averaged problem for the Uranus-Sun-satellite system, in which Uranus’s orbital eccentricity e U and inclination i U to the ecliptic are assumed to be zero. For the real model of Uranus’s evolving orbit with e U≠0 and i U≠0, we refine the evolutional parameters of the satellite orbits by numerically integrating the averaged system. Having analyzed the configuration and dynamics of the orbits of Uranus’s five outer satellites, we have revealed the possibility of their mutual crossings and obtained approximate temporal estimates.  相似文献   
72.
We have used Cassini stereo images to study the topography of Iapetus' leading side. A terrain model derived at resolutions of 4-8 km reveals that Iapetus has substantial topography with heights in the range of −10 km to +13 km, much more than observed on the other middle-sized satellites of Saturn so far. Most of the topography is older than 4 Ga [Neukum, G., Wagner, R., Denk, T., Porco, C.C., 2005. Lunar Planet. Sci. XXXVI. Abstract 2034] which implies that Iapetus must have had a thick lithosphere early in its history to support this topography. Models of lithospheric deflection by topographic loads provide an estimate of the required elastic thickness in the range of 50-100 km. Iapetus' prominent equatorial ridge [Porco, C.C., and 34 colleagues, 2005. Science 307, 1237-1242] reaches widths of 70 km and heights of up to 13 km from their base within the modeled area. The morphology of the ridge suggests an endogenous origin rather than a formation by collisional accretion of a ring remnant [Ip, W.-H., 2006. Geophys. Res. Lett. 33, doi:10.1029/2005GL025386. L16203]. The transition from simple to complex central peak craters on Iapetus occurs at diameters of 11±3 km. The central peaks have pronounced conical shapes with flanking slopes of typically 11° and heights that can rise above the surrounding plains. Crater depths seem to be systematically lower on Iapetus than on similarly sized Rhea, which if true, may be related to more pronounced crater-wall slumping (which widens the craters) on Iapetus than on Rhea. There are seven large impact basins with complex morphologies including central peak massifs and terraced walls, the largest one reaches 800 km in diameter and has rim topography of up to 10 km. Generally, no rings are observed with the basins consistent with a thick lithosphere but still thin enough to allow for viscous relaxation of the basin floors, which is inferred from crater depth-to-diameter measurements. In particular, a 400-km basin shows up-domed floor topography which is suggestive of viscous relaxation. A model of complex crater formation with a viscoplastic (Bingham) rheology [Melosh, H.J., 1989. Impact Cratering. Oxford Univ. Press, New York] of the impact-shocked icy material provides an estimate of the effective cohesion/viscosity at . The local distribution of bright and dark material on the surface of Iapetus is largely controlled by topography and consistent with the dark material being a sublimation lag deposit originating from a bright icy substrate mixed with the dark components, but frost deposits are possible as well.  相似文献   
73.
Aspects of two qualitative models of Enceladus’ dust plume—the so-called “Cold Faithful” [Porco, C.C., et al., 2006. Cassini observes the active south pole of Enceladus. Science 311, 1393-1401; Ingersoll, A.P., et al., 2006. Models of the Enceladus plumes. In: Bulletin of the American Astronomical Society, vol. 38, p. 508] and “Frigid Faithful” [Kieffer, S.W., et al., 2006. A clathrate reservoir hypothesis for Enceladus’ south polar plume. Science 314, 1764; Gioia, G., et al., 2007. Unified model of tectonics and heat transport in a Frigid Enceladus. Proc. Natl. Acad. Sci. 104, 13578-13591] models—are analyzed quantitatively. The former model assumes an explosive boiling of subsurface liquid water, when pressure exerted by the ice crust is suddenly released due to an opening crack. In the latter model the existence of a deep shell of clathrates below Enceladus’ south pole is conjectured; clathrates can decompose explosively when exposed to vacuum through a fracture in the outer icy shell. For the Cold Faithful model we estimate the maximal velocity of ice grains, originating from water splashing in explosive boiling. We find that for water near the triple point this velocity is far too small to explain the observed plume properties. For the Frigid Faithful model we consider the problem of momentum transfer from gas to ice particles. It arises since any change in the direction of the gas flow in the cracks of the shell requires re-acceleration of the entrained grains. While this effect may explain the observed speed difference of gas and grains if the gas evaporates from triple point temperature (273.15 K) [Schmidt, J., et al., 2008. Formation of Enceladus dust plume. Nature 451, 685], the low temperatures of the Frigid Faithful model imply a too dilute vapor to support the observed high particle fluxes in Enceladus’ plume.  相似文献   
74.
Trajectory Analysis and Design for A Jupiter Exploration Mission   总被引:1,自引:0,他引:1  
The trajectory design for a Jupiter exploration mission is investigated in this paper. The differences between the Jupiter exploration trajectory and the Mars or Venus exploration trajectory are mainly concerned about. Firstly, the selection of the Jupiter-centered orbit is analyzed based on the Galileo Jupiter mission. As for the Earth-Jupiter transfer orbit, the fuel consumption of the direct transfer is too large. So the energy-saving technologies such as the planetary gravity assist should be used for the trajectory to the Jupiter. The different sequences of planetary gravity assists are examined by applying the Particle Swarm Optimization (PSO). According to the searched result, the Venus-Earth-Earth sequence (VEEGA) is the most effective one for the Jupiter mission. During the Jupiter mission, the spacecraft will pass though the main asteroid belt between the orbits of Mars and Jupiter, and may encounter multiple asteroids. Therefore the Jupiter mission is able to combine with the main-belt asteroid flyby mission. The design method of the intermediate asteroid flyby trajectory is also considered. At last, an entire trajectory for the Jupiter mission launched in 2023 is presented.  相似文献   
75.
张健 《天文学报》2012,53(4):299-307
利用授时历法和现代天文计算方法,对中国历代天文志记录的荧惑(火星)守列宿、四星聚、五星聚进行分析研究,结果表明:65条荧惑守列宿,正误率分别为49%和51%.如果把荧惑留、留守、在某宿等运动形态也考虑为守的范围,共有95条,其正误率分别为56%和44%.12条四星聚正误率各占一半,即50%.11条五星聚正误率分别为82%和18%(其中含五星并见).并对错误记录的原因做了初步探讨.  相似文献   
76.
77.
We compute the normal forms for the Hamiltonian leading to the epicyclic approximations of the (perturbed) Kepler problem in the plane. The Hamiltonian setting corresponds to the dynamics in the Hill synodic system where, by means of the tidal expansion of the potential, the equations of motion take the form of perturbed harmonic oscillators in a rotating frame. In the unperturbed, purely Keplerian case, the post-epicyclic solutions produced with the normal form coincide with those obtained from the expansion of the solution of the Kepler equation. In all cases where the perturbed problem can be cast in autonomous form, the solution is easily obtained as a perturbation series. The generalization to the spatial problem and/or the non-autonomous case is straightforward.  相似文献   
78.
S. Alan Stern 《Icarus》2009,199(2):571-573
In this Note, I present first-order scaling calculations to examine the efficacy of impacts by Kuiper Belt debris in causing regolith exchange between objects in the Pluto system. It is found that ejecta can escape Nix and Hydra with sufficient velocity to reach one another, as well as Charon, and even Pluto. The degree of ejecta exchanged between Nix and Hydra is sufficient to cover these bodies with much more material than is required for photometrically change. In specific, Nix and Hydra may have exchanged as up to 10s of meters of regolith, and may have covered Charon to depths up to 14 cm with their ejecta. Pluto is likely unaffected by most Nix and Hydra ejecta by virtue of a combination of dynamical shielding from Charon and Pluto's own annual atmospheric frost deposition cycle. As a result of ejecta exchange between Nix, Hydra, and Charon, these bodies are expected to evolve their colors, albedos, and other photometric properties to be self similar. These are testable predictions of this model, as is the prediction that Nix and Hydra will have diameters near 50 km, owing to having a Charon-like albedo induced by ejecta exchange. As I discuss, this ejecta exchange process can also be effective in many KBOs and asteroids with satellites, and may be the reason that very many KBO and asteroid satellite systems have like colors.  相似文献   
79.
We have reanalyzed the high-resolution spectrum of Titan between 2.87 and 3.12 μm observed with NIRSPEC/Keck II on 2001 Nov. 21 in southern summer, using updated CH3D and C2H6 line-by-line models. From new synthetic spectra, we identify all but a few of the previously unidentified significant absorption spectral features in this wavelength range as due to these two species, both of which had been previously detected by Voyager and ground-based observations at other wavelengths. We also derive opacities and reflectivities of haze particles as functions of altitude for the 2.87-2.92 μm wavelength range, where Titan's atmosphere is partially transparent down to the surface. The extinction per unit altitude is observed to increase from 100 km (∼8 mbar) toward lower altitude. The derived total optical depth is approximately 1.1 for the 2.87-2.92 μm range. At wavelengths increasing beyond 2.92 μm the haze layers become much more optically thick, and the surface is rapidly hidden from view. These conclusions apply to equatorial and southern-temperate regions on Titan, excluding polar regions. We also find it unlikely that there is a large enhancement of the tropospheric CH4 mole fraction over the value reported from analysis of the Huygens/GCMS observations.  相似文献   
80.
Using Cassini images, we examine the faint material along the orbits of Methone, Anthe and Pallene, three small moons that reside between the orbits of Mimas and Enceladus. A continuous ring of material covers the orbit of Pallene; it is visible at extremely high phase angles and appears to be localized vertically to within ±25 km of Pallene's inclined orbit. By contrast, the material associated with Anthe and Methone appears to lie in longitudinally confined arcs. The Methone arc extends over ∼10° in longitude around the satellite's position, while the Anthe arc reaches ∼20° in length. The extents of these arcs are consistent with their confinement by nearby corotation eccentricity resonances with Mimas. Anthe has even been observed to shift in longitude relative to its arc in the expected manner given the predicted librations of the moon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号