首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   7篇
  国内免费   23篇
大气科学   3篇
地球物理   7篇
地质学   72篇
自然地理   29篇
  2014年   2篇
  2013年   1篇
  2010年   1篇
  2008年   3篇
  2007年   2篇
  2006年   9篇
  2005年   5篇
  2004年   12篇
  2003年   21篇
  2002年   14篇
  2001年   11篇
  2000年   4篇
  1999年   6篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有111条查询结果,搜索用时 981 毫秒
71.
概念性水文模型在出山径流预报中的应用   总被引:37,自引:6,他引:37  
根据HBV水文模型的基本原理,建立了西北干旱区内陆河出山径流概念性水文模型。该模型反映了我国西部山区流域的径流形成特征,将山区流域划分为高山冰雪冻土带和山区植被带两个基本海拔景观带来对山区径流的形成和汇流过程进行模拟计算,以常规气象站的月气温和降水量为模型的初始输入,模拟计算月出山径流量。应用该模型对河西走廊黑河祁连山北坡的山区流域水量平衡进行了模拟计算,并对年径流和逐月分配进行了预报。结果表明,从枯水年到丰水年,降水量、蒸发量、径流量和径流系数均增加,而冰川融水和积雪融水对出山径流的补给比重则减少,这表明了冰雪融水对径流的具有调节作用。黑河山区流域径流系数远比干旱内流区的平均值大,但要小于全国的平均径流系数。所提出的内陆河山区流域出山径流的模拟和预报模型对年径流量和月分配的预报具有较好的精度,可用于黑河以及其他西北干旱区内陆河出山径流的预报,为内陆河流域中下游的水资源分配和开发利用提供依据。  相似文献   
72.
两种小型蒸渗仪在黑河流域山区植被带的应用研究   总被引:9,自引:3,他引:6  
为定量说明黑河流域山区植被带林地与草地在不同覆盖状况下的蒸发与下渗差异, 依据实际情况设计了桶式与环刀式两种小型蒸渗仪, 根据测算结果评价了两类小型蒸渗仪的适用性, 并剔除不合理测算数据. 根据2002年雨季蒸渗仪观测试验, 将黑河流域山区草地的雨季蒸发分为3个过程:雨季早期, 雨季中期和雨季晚期, 并对这3个过程的蒸发进行对比. 根据计算结果, 分析了草类和草地盖度变化对蒸散发的影响, 并计算了林地与草地的平均下渗量.  相似文献   
73.
黑河下游天然胡杨树干液流特征的试验研究   总被引:16,自引:1,他引:15  
应用热扩散原理,采用ICT2000TE 研究了黑河下游25 a生天然胡杨(Populus euphratica)的树干液流特点及其与环境因子的关系.结果表明:1) 在整个生长季的晴天,胡杨树干液流的日变化呈现明显的单峰宽峰曲线.液流速率在6、7、8、9和10月分别为13.39、12.07、12.69和5.1 L·d-1;2) 胡杨在夜间有微弱上升液流,可能存在根压;3) 在生长季树干液流速率与环境因子逐步回归分析结果表明,树干液流受环境因子的综合影响,影响大小依次是空气温度、土壤含水量、相对湿度、总辐射、土壤温度和风速.  相似文献   
74.
在全球变暖的背景下,我国多数大江大河源区存在冰川退缩、雪线上升以及多年冻土和季节冻土明显退化等现象,并由此造成河源区产流量减少以及生态环境恶化等诸多问题,这在内陆河山区流域体现的较为明显,但目前分布式水文模型中很少涉及冻土水热耦合问题。文章以黑河干流山区流域为例,构建了一个内陆河高寒山区流域分布式水热耦合模型(DWHC)。模型基于土壤水热连续性方程将流域产流、入渗和蒸散发过程融合起来,在植被截留、入渗、产流和蒸散发计算方面也有所改进和创新,部分模块具有多个可选择方案。模型设计了与中尺度大气模式MM5的嵌套接口,也可以用地面气象资料驱动。模型在1 km×1 km网格基础上,以日为时间步长,将流域土壤分为18类,土壤剖面分为3~5层不等,流域植被概化为9类。模型只需要土壤初始含水量、初始地温和常规气象资料,以及土壤和植被物理参数,就能够连续演算各层土壤的温度、液态含水量、固态含水量、感热传导、潜热变化、水势梯度、导水率以及水分入渗和毛细上升量等水文循环要素。主要介绍了模型的基本原理和构建思路,有关模型的地面资料驱动结果和与MM5嵌套结果部分,参见后续文章(Ⅱ)、(Ⅲ)。  相似文献   
75.
利用中尺度气候模式MM5计算黑河山区流域2003年2月11日到6月30日的日降水量、2.0 m高度的日平均气温和潜热,并将其嵌套到DWHC模型中。MM5运行周期为10 d,积分步长为3 s,空间分辨率为3 km。保持DWHC模型土壤参数、植被参数、经验参数和可调参数等不变,仅对模型初始参数进行了调整,利用最近距离法(nearest)将MM5输出结果插值到1 km×1 km格点上,所计算的黑河干流出山口日平均流量与实测序列的NSE=0.79,B=-0.79(%),EV=0.79,R2=0.81。利用基于三角网格的立体插值法(cubic)所获结果与此相当,NSE=0.79,B=-0.65(%),EV=0.79,R2=0.80。这说明利用MM5 DWHC嵌套模型来模拟流域日平均流量是可行的。MM5 DWHC嵌套模型在径流模拟方面,比利用地面资料驱动结果要好。MM5 DWHC嵌套模型的计算结果表明,内陆河高寒山区流域存在明显的浅表产流特征,这与地面观测资料驱动结果一致。模型调试结果表明,MM5输出结果存在某种奇异性,且输出的非汛期降水量明显偏大。  相似文献   
76.
河西内陆干旱区出山径流特征与变化趋势   总被引:5,自引:4,他引:5  
一般情况下,水资源的变化主要受气候变化和人类活动的影响,但在位于我国西北内陆干旱地区的中高山地带,径流的形成主要受前者的影响。甘肃省的河西内陆干旱区是该省重要的工农业生产和经济开发区,这里各项社会和经济活动与出山径流的变化都有着十分密切的关系。因此,笔者根据有关水文气象台站的降水、气温和径流观测资料,分析了以黑河、昌马河、西营河等主要河流为代表的河酉内陆区出山径流的变化特征与规律。结果表明,河西内陆区出山口径流的季节变化主要受地理位置和河流补给来源的影响,而年际变幅则受山区降水量年际变化及变幅的影响十分明显。目前,梨园河以西河流水量处于上升阶段,梨园河以东的河流则处于下降的阶段;以黑河干流莺落峡水文站年径流为代表的走廊中部地区的出山口径流正处于1990年开始的枯水段的上升段。但总体而言,河西内陆干旱区出山口径流的变化相对比较稳定。预计今后若干年内,河西内陆干旱区东段河流出山口径流的变化以偏枯为主,中段、西段河流出山口径流的变化以平水或平水偏丰为主。  相似文献   
77.
从甘肃土地资源利用现状出发,在对土地资源管理存在问题分析和解决途径的探讨中,把各特殊区域的特殊问题综合化,从经济地理学的高度进行了思考并作了结论。  相似文献   
78.
甘肃半干旱区天然降水是主要的水资源,而干旱区的水资源来自于南部祁连山以及阿尔金山的山区降水和冰雪融水.甘肃半干旱区在小麦生长需水关键期的5~6月,降水量离差系数大,农业生产易遭旱灾.河西干旱区出山径流较稳定,为灌溉农业的稳定提供了基础.甘肃半干旱地区的水资源持续开发利用应主要拦蓄大气降水,配合开发地下水,并合理规划利用地表水,其中雨水集流工程和旱作节水农业技术的推广政策和措施是关键.干旱区的水资源持续开发利用主要应通过水价调整来引导建立节水型经济结构和推广节水技术,政策支持重点领域是水资源的合理配置并完善绿洲资源保护与水源涵养林保护的法规体系  相似文献   
79.
甘肃干旱与半干旱地区水资源可持续开发利用对比分析   总被引:9,自引:3,他引:9  
甘肃半干旱区天然降水是主要的水资源,而干旱区的水资源来自于南部祁连山以及阿尔金山的山区降水和冰雪融水,甘肃半干旱区在小麦生长需大关键期的5-6月,降水量离差系数大,农业生产易遭旱灾,河西干旱区出山径流较稳定,为灌溉农业的稳定提供了基础,甘肃半干旱地区的水资源持续开发利用应主要拦蓄大气降水,配合开发地下水,并合理规划利用地表水,其中雨水集流工程和旱作节水农业技术的推广政策和措施是关键,干旱区的水资源持续开发利用主要应通过水价调整来引导建立节水型经济结构和推广节水技术,政策支持重点领域是水资源的合理配置并完善绿洲资源保护与水源涵养林保护的法规体系。  相似文献   
80.
B—P神经网络在径流长期预测中的应用   总被引:9,自引:5,他引:9  
人工神经网络作为一个具有高度非线性映射能力的计算模型,已广泛应用于模式识别、自动控制等许多领域。在数值预测方面,它不需要预先确定样本的数学模型,仅通过学习样本数据即可进行预测。作者以龙羊峡水库入库径流为研究对象,将人工神经网络中的反向传播算法(简称B-P模型)应用于入库径流变化趋势的长期预测,并将基结果与常用的时间序列分析方法的计算结果进行比较,以分析人工神经网络在径流预测领域应用的优越性及其应用前景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号